733
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Production and biochemical characterization of keratinase enzyme from Bacillus subtilis ES5 and its potential application in leather dehairing process: a clean leather tanning process

ORCID Icon, , , , & ORCID Icon
Article: 2288691 | Received 20 Mar 2023, Accepted 22 Nov 2023, Published online: 11 Dec 2023

References

  • Admassu T, Desta AF, Love NG. Evaluating tannery wastewater treatment performance based on physicochemical and microbiological characteristics: an ethiopian case study. Water Environ Res. 2021;93(5):1–12. doi: 10.1002/wer.1364.
  • Kanagaraj J, Panda RC, Kumar MV. Trends and advancements in sustainable leather processing: future directions and challenges—a review. J Environ Chem Eng. 2020;8(5):104379. doi: 10.1016/j.jece.2020.104379.
  • Khambhaty Y. Applications of enzymes in leather processing. Environ Chem Lett. 2020;18(3):747–769. doi: 10.1007/s10311-020-00971-5.
  • Akhter M, Marzan LW, Shimizu K, et al. Microbial bioremediation of feather waste for keratinase production: an outstanding solution for leather dehairing in tanneries. Microbiol Insights. 2020;13:1178636120913280. doi: 10.1177/1178636120913280.
  • Razzaq A, Shamsi S, Ali A, et al. Microbial proteases applications. Front Bioeng Biotechnol. 2019;7:110. doi: 10.3389/fbioe.2019.00110.
  • Fang Z, Yong Y, Zhang J, et al. Keratinolytic protease: a green biocatalyst for leather industry. Appl Microbiol Biotechnol. 2017;101(21):7771–7779. doi: 10.1007/s00253-017-8484-1.
  • Chojnack K, Skrzypczak D, Mikula K, et al. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021;313:127902. doi: 10.1016/j.jclepro.2021.127902.
  • Belay E, Gessesse A. 2018. Production of microbial alkaline protease for deharing of skin in leather tanning industry. Addis Ababa, Ethiopia: Addis Ababa University.
  • Contesini FJ, Melo RRD, Sato HH. An overview of bacillus proteases: from production to application an overview of bacillus proteases: from production to application. Crit Rev Biotechnol. 2017;38(3):321–334. doi: 10.1080/07388551.2017.1354354.
  • Kalaikumari SS, Vennila T, Monika V, et al. Bioutilization of poultry feather for keratinase production and its application in leather industry. J Cleaner Prod. 2019;208:44–53. doi: 10.1016/j.jclepro.2018.10.076.
  • Gessesse A, Mulaa F, Lyantagaye SL, et al. 2011. Industrial enzymes for sustainable Bio-Economy: large scale production and application in industry, environment, and agriculture in Eastern Africa. Nairobi (Kenya): International Livestock Research Institute (ILRI).
  • Akram F, Afifa H, Hayat K, et al. Keratinolytic enzyme from a thermotolerant isolate bacillus sp. NDS ‑ 10: an efficient green biocatalyst for poultry waste management, laundry and hide ‑dehairing applications. Waste Biomass Valor. 2021;12(9):5001–5018. doi: 10.1007/s12649-021-01369-2.
  • Raveendran S, Parameswaran B, Ummalyma SB, et al. Applications of microbial enzymes in food industry. Food Technol Biotechnol. 2018;56(1):16–30. doi: 10.17113/ftb.56.01.18.5491.
  • Saggu SK, Mishra PC. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil. PLoS One. 2017;12(11):e0188724. doi: 10.1371/journal.pone.0188724.
  • Singh S, Bajaj BK. Potential application spectrum of microbial proteases for clean and green industrial production. Energ Ecol Environ. 2017;2(6):370–386. doi: 10.1007/s40974-017-0076-5.
  • Venkatachalam M, Rathinam A, Rao JR, et al. Bioconversion of animal hair waste using salt -and sulphide-tolerant bacillus sp. KLP1 and depilation using keratinase. Int J Environ Sci Technol. 2022;19(7):6389–6398. doi: 10.1007/s13762-021-03437-5.
  • Qiu J, Wilkens C, Barrett K, et al. Microbial enzymes catalyzing keratin degradation: classification, structure, function. Biotechnol Adv. 2020;44:107607. doi: 10.1016/j.biotechadv.2020.107607.
  • Kumar S, Sreeja N, Devi PS, et al. A review on microbial proteases. IJAR. 2016;4(7):2048–2053. doi: 10.21474/IJAR01.
  • Duman YA, Tekin N. Kinetic and thermodynamic properties of purified alkaline protease from Bacillus pumilus Y7 and non-covalent immobilization to poly (vinylimidazole)/clay hydrogel. Eng Life Sci. 2020;20(1-2):36–49. doi: 10.1002/elsc.201900119.
  • Hu Y, Yu D, Zhaoting W, et al. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from douchi, a traditional chinese fermented soybean food. Sci Rep. 2019;9(1):9235. doi: 10.1038/s41598-019-45686-y.
  • Jabeur F, Mechri S, Kriaa M, et al. Statistical experimental design optimization of microbial proteases production under co-culture conditions for chitin recovery from speckled shrimp metapenaeus monoceros by-Product. Biomed Res Int. 2020;2020:3707804–3707810. doi: 10.1155/2020/3707804.
  • Perfumo A, Johannes G, Sass F, et al. Discovery and characterization of a new Cold-Active protease from an extremophilic bacterium via comparative genome analysis and in vitro expression. Front Microbiol. 2020;11:881. doi: 10.3389/fmicb.2020.00881.
  • Sharma C, Timorshina S, Osmolovskiy A, et al. Chicken feather waste valorization into nutritive protein hydrolysate: role of novel thermostable keratinase from Bacillus pacificus. Front Microbiol. 2022;13:882902. doi: 10.3389/fmicb.2022.882902.
  • Benmrad MO, Mechri S, Jaouadi NZ, et al. Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnol. 2019;19(1):43. doi: 10.1186/s12896-019-0536-4.
  • Lakshmi BKM, Kumar DM, Hemalatha KPJ. Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. J Genet Eng Biotechnol. 2018;16(2):295–304. doi: 10.1016/j.jgeb.2018.05.009.
  • Alamnie G, Gessesse A, Andualem B. Production of surfactant-stable keratinolytic protease from B. subtilis ES5 and its application as a detergent additive. Biocatal Agric Biotechnol. 2023;50:102750. doi: 10.1016/j.bcab.2023.102750.
  • Nnolim NE, Okoh AI, Nwodo UU. Elucidation of coding gene and characterization of alkaline metallo-keratinase produced by acidophilic Bacillus sp. Okoh-K1 grown on chicken feather. Env Technol Innov. 2021;21:101285. doi: 10.1016/j.eti.2020.101285.
  • Ramesh RR, Muralidharan V, Palanivel S. Preparation and application of unhairing enzyme using solid wastes from the leather industry—an attempt toward internalization of solid wastes within the leather industry. Environ Sci Pollut Res Int. 2018;25(3):2121–2136. doi: 10.1007/s11356-017-0550-9.
  • Gomes JE, Rosa IZ, Nascimento TCEA, et al. Biochemical and thermodynamic characteristics of a new serine protease from mucor subtilissimus URM 4133. Biotechnol Rep (Amst). 2020;28:e00552. doi: 10.1016/j.btre.2020.e00552.
  • Ramkumar A, Sivakumar N, Gujarathi AM, et al. Production of thermotolerant, detergent stable alkaline protease using the gut waste of sardinella longiceps as a substrate: optimization and characterization. Sci Rep. 2018;8(1):12442. doi: 10.1038/s41598-018-30155-9.
  • Hakim A, Bhuiyan FR, Iqbal A, et al. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon. 2018;4(6):e00646. doi: 10.1016/j.heliyon.2018.e00646.
  • Shaikh IK, Dixit PP, Shaikh TM. Biotechnology purification and characterization of alkaline soda-bleach stable protease from bacillus sp. APP-07 isolated from laundromat soil. J Genet Eng Biotechnol. 2018;16(2):273–279. doi: 10.1016/j.jgeb.2018.07.003.
  • Paul T, Das A, Mandal A, et al. Effective dehairing properties of keratinase from Paenibacillus woosongensis TKB2 obtained under solid state fermentation. Waste Biomass Valor. 2014;5(1):97–107. doi: 10.1007/s12649-013-9217-z.
  • United States Environmental Protection Agency (EPA). 2018. Water monitoring and Assessment. Available online: https://archive.epa.gov/water/archive/web/html/vms52.html. (accessed on 19 July 2018).
  • Aniyikaiye TE, Oluseyi T, Odiyo JO, et al. Physico-Chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. Int J Environ Res Public Health. 2019;16(7):1235. doi: 10.3390/ijerph16071235.
  • Sharma K, Kumar R, Panwar S, et al. Microbial alkaline proteases: Optimization of production parameters and their properties. J Genet Eng Biotechnol. 2017;15(1):115–126. doi: 10.1016/j.jgeb.2017.02.001.
  • Rai SK, Konwarh R, Mukherjee AK. Purification, characterization and biotechnological application of an alkaline-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochem Eng J. 2009;45(3):218–225. doi: 10.1016/j.bej.2009.04.001.
  • Iqbal A, Hakim A, Hossain S, et al. Partial purification and characterization of serine protease produced through fermentation of organic municipal solid wastes by Serratia marcescens A3 and Pseudomonas putida A2. J Genet Eng Biotechnol. 2018;16(1):29–37. doi: 10.1016/j.jgeb.2017.10.011.
  • Avcı A, Demir S, Akçay FA. Production, properties and some applications of protease from alkaliphilic bacillus sp. EBTA6. Prep Biochem Biotechnol. 2021;51(8):803–810. doi: 10.1080/10826068.2020.1858429.
  • Yong B, Fei X, Shao H, et al. Recombinant expression and biochemical characterization of a novel keratinase BsKER71 from feather degrading bacterium Bacillus subtilis S1-4. AMB Express. 2020;10(1):9. doi: 10.1186/s13568-019-0939-6.
  • Kshetri P, Saikat S, Babeeta S, et al. Valorization of chicken feather waste into bioactive keratin hydrolysate by a newly purified keratinase from Bacillus sp. RCM-SSR-102. J Env Manage. 2020;273:111195. doi: 10.1016/j.jenvman.2020.111195.
  • Akram F, Aqeel A, Shoaib M, et al. Multifarious revolutionary aspects of microbial keratinases: an efficient green technology for future generation with prospective applications. Environ Sci Pollut Res Int. 2022;29(58):86913–86932. doi: 10.1007/s11356-022-23638-w.
  • Akram F, Haq I, Jabbar Z. Production and characterization of a novel thermo- and detergent stable keratinase from bacillus sp. NKSP-7 with perceptible applications in leather processing and laundry industries. Int J Biol Macromol. 2020;164:371–383. doi: 10.1016/j.ijbiomac.2020.07.146.
  • Bhari R, Kaur M, Singh RS. Thermostable and halotolerant keratinase from with Bacillus aerius NSMk2 remarkable dehairing and laundary applications. J Basic Microbiol. 2019;59(6):555–568. doi: 10.1002/jobm.201900001.
  • Shen N, Yang M, Xie C, et al. Isolation and identification of a feather degrading Bacillus tropicus strain gxun‑17 from marine environment and its enzyme characteristics. BMC Biotechnol. 2022;22(1):11. doi: 10.1186/s12896-022-00742-w.
  • El-Ghonemy DH, Ali TH. Effective bioconversion of feather-waste keratin by thermo-surfactant stable alkaline keratinase produced from Aspergillus sp. DHE7 with promising biotechnological application in detergent formulations. Biocatal Agric Biotechnol. 2021;35:102052. doi: 10.1016/j.bcab.2021.102052.
  • Tian J, Xu Z, Long X, et al. High-expression keratinase by Bacillus subtilis SCK6 for enzymatic dehairing of goatskins. Int J Biol Macromol. 2019;135:119–126. doi: 10.1016/j.ijbiomac.2019.05.131.
  • Daroit DJ, Brandelli A, Corre APF. Characterization of a keratinase produced by bacillus sp. P7 isolated from an amazonian environment. Int Biodeterioration Biodegrad. 2010;64(1):1–6. doi: 10.1016/j.ibiod.2009.06.015.
  • Rios P, Bezus B, Cavalitto S, et al. Production and characterization of a new detergent—stable keratinase expressed by pedobacter sp. 3.14.7, a novel antarctic psychrotolerant keratin -degrading bacterium. J Genet Eng Biotechnol. 2022;20(1):81. doi: 10.1186/s43141-022-00356-x.
  • Zhang R-X, Gong J-S, Zhang D-D, et al. A metallo-keratinase from a newly isolated Acinetobacter sp. R-1 with low collagenase activity and its biotechnological application potential in leather industry. Bioprocess Biosyst Eng. 2016;39(1):193–204. doi: 10.1007/s00449-015-1503-7.
  • Parinayawanich S, Sittipol D, Ajingi YS, et al. Application of recombinant hyperthermostable keratinase for degradation of chicken feather waste. Biocatal Agric Biotechnol. 2021;36:102146. doi: 10.1016/j.bcab.2021.102146.
  • Nnolim NE, Udenigwe CC, Okoh AI, et al. Microbial keratinase : next generation green catalyst and prospective applications. Front Microbiol. 2020;11:580164. doi: 10.3389/fmicb.2020.580164.
  • Elhoul MB, Jaouadi NZ, Bouacem K, et al. Heterologous expression and purification of keratinase from Actinomadura viridilutea DZ50: feather biodegradation and animal hide dehairing bioprocesses. Environ Sci Pollut Res Int. 2021;28(8):9921–9934. doi: 10.1007/s11356-020-11371-1.
  • Gupta R, Rajput R, Sharma R, et al. Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol. 2013;97(23):9931–9940. doi: 10.1007/s00253-013-5292-0.
  • Li X, Zhang Q, Xu Z, et al. High-expression and characterization of a novel serine protease from ornithinibacillus caprae—L9 T with eco-friendly applications. Environ Sci Pollut Res Int. 2022;29(24):35996–36012. doi: 10.1007/s11356-021-17495-2.
  • Arokiyaraj S, Varghese R, Ali Ahmed B, et al. Optimizing the fermentation conditions and enhanced production of keratinase from Bacillus cereus isolated from halophilic environment. Saudi J Biol Sci. 2018;26(2):378–381. doi: 10.1016/j.sjbs.2018.10.011.