411
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Selected rhizobacteria strains as potential growth promoters and biocontrol agents against chocolate spot disease in faba bean grown in pots

, &
Article: 2297885 | Received 24 Apr 2023, Accepted 18 Dec 2023, Published online: 26 Dec 2023

References

  • Martineau-Côté D, Achouri A, Karboune S, et al. Faba bean: an untapped source of quality plant proteins and bioactives. Nutrients. 2022;14(8):1. doi: 10.3390/nu14081541.
  • Maluk M, Ferrando-Molina F, Lopez del Egido L, et al. Fields with no recent legume cultivation have sufficient nitrogen-fixing rhizobia for crops of faba bean (vicia faba L.). Plant Soil. 2022;472(1-2):345–10. doi: 10.1007/s11104-021-05246-8.
  • Karkanis A, Ntatsi G, Lepse L, et al. Faba bean cultivation - revealing novel managing practices for more sustainable and competitive european cropping systems. Front Plant Sci. 2018;9:1115. doi: 10.3389/fpls.2018.01115.
  • Torres AM, Román B, Avila CM, et al. Faba bean breeding for resistance against biotic stresses: towards application of marker technology. Euphytica. 2004;147(1–2):67–80. doi: 10.1007/s10681-006-4057-6.
  • Abera M, Semagn M. Effect of varieties and fungicide rate on chocolate spot (botrytis fabae) disease of faba bean (vicia faba L.) at tach gayint district in South gondar zone, Amhara region, Ethiopia. AJPS. 2022;13(05):588–599. doi: 10.4236/ajps.2022.135039.
  • El-Banoby F, Abd-Alla MA, Tolba IH, et al. Biological control of chocolate spot disease of faba bean using some bioagents under field conditions. J Appl Sci Res. 2013;9:4021–4029.
  • El-Shatoury SA, Ameen F, Moussa H, et al. Biocontrol of chocolate spot disease (Botrytis cinerea) in faba bean using endophyticactinomycetes streptomyces: a field study to compare application techniques. PeerJ. 2020;8:e8582. doi: 10.7717/peerj.8582.
  • Mbazia A, Omri Ben Youssef N, Kharrat M. Tunisian isolates of trichoderma spp. and Bacillus subtilis can control botrytis fabae on faba bean. Biocontrol Sci Technol. 2016;26(7):915–927. doi: 10.1080/09583157.2016.1168775.
  • Wubshet ML, Chala A. Management of faba bean chocolate spot (botrytis fabae) through varieties and fungicide application frequencies in Southern Tigray, Ethiopia. Arch Phytopathol Plant Protect. 2021;54(19–20):2233–2246. doi: 10.1080/03235408.2021.1925516.
  • Walia A, Mehta P, Guleria S, et al. Impact of fungicide mancozeb at different application rates on soil microbial populations, soil biological processes, and enzyme activities in soil. Sci World J. 2014;2014:702909–702909. doi: 10.1155/2014/702909.
  • EIAR. 2018. Faba bean production guideline using rhizobial bio-fertilizer technology.
  • Khunnamwong P, Lertwattanasakul N, Jindamorakot S, et al. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiol (Praha). 2020;65(3):573–590. doi: 10.1007/s12223-019-00764-6.
  • Jiao X, Takishita Y, Zhou G, et al. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci. 2021;12:634796. doi: 10.3389/fpls.2021.634796.
  • Bechtaoui N, Raklami A, Tahiri AI, et al. Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biol Open. 2019;8(7):1–8. doi: 10.1242/bio.043968.
  • Adal M, Wubie G, Adem K. Isolation and characterization of rhizobacteria with biocontrol activities against faba bean (vicia faba L.) chocolate spot disease causing botrytis fabae. Abyssinia J Sci Technol. 2022;7(1):1–10.
  • Fekadu A, Tesfaye A. Pseudomonas fluorescens isolates used as a plant growth promoter of faba bean (vicia faba) in vitro as well as in vivo study in Ethiopia. Am J Life Sci. 2015;3(2):100–108. doi: 10.11648/j.ajls.20150302.17.
  • Zewdineh F, Tesfaye A, Fassil A. The synergistic effects of trichodermaharzianum AAUT14 and Bacillus subtilis AAUB95 on faba bean (vicia faba L.) growth performance and control of chocolate spot compared to chemical fungicides under greenhouse conditions. Arch Phytopathol Plant Protect. 2022;55(2):129–142. doi: 10.1080/03235408.2021.2000179.
  • Arjona-López JM, Tienda S, Arjona-Girona I, et al. Combination of low concentrations of fluazinam and antagonistic rhizobacteria to control avocado white root rot. Biol. Control. 2019;136:103996. doi: 10.1016/j.biocontrol.2019.05.015.
  • Cazorla FM, Duckett S, Bergström E, et al. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl, 5-propyl resorcinol. Mol Plant Microbe Interact. 2006;19(4):418–428. doi: 10.1094/MPMI-19-0418.
  • Fernando WGD, Nakkeeran S, Zhang Y, et al. Biological control of sclerotiniasclerotiorum (lib.) de bary by Pseudomonas and bacillus species on canola petals. Crop Prot. 2007;26(2):100–107. doi: 10.1016/j.cropro.2006.04.007.
  • González-Sánchez MÁ, de Vicente A, Pérez-García A, et al. Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biol. Control. 2013;67(2):94–100. doi: 10.1016/j.biocontrol.2013.08.009.
  • Liu F, Yang S, Xu F, et al. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. BMC Microbiol. 2022;22(1):9. doi: 10.1186/s12866-021-02420-x.
  • Tienda S, Vida C, Lagendijk E, et al. Soil application of a formulated biocontrol rhizobacterium, Pseudomonas chlororaphis PCL1606, induces soil suppressiveness by impacting specific microbial communities. Front Microbiol. 2020;11:1874. doi: 10.3389/fmicb.2020.01874.
  • Xu W, Xu L, Deng X, et al. Biological control of Take-All and growth promotion in wheat by Pseudomonas chlororaphis YB-10. Pathogens. 2021;10(7):903. doi: 10.3390/pathogens10070903.
  • Alsultan W, Vadamalai G, Khairulmazmi A, et al. Isolation, identification and characterization of endophytic bacteria antagonistic to phytophthorapalmivora causing black pod of cocoa in Malaysia. Eur J Plant Pathol. 2019;155(4):1077–1091. doi: 10.1007/s10658-019-01834-8.
  • Kim H, Sang MK, Jung HW, et al. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of phytophthora blight of pepper. Crop Prot. 2012;32:129–137. doi: 10.1016/j.cropro.2011.10.018.
  • Gebeyehu Y, Zewdu T, Atsede M. Bio-control of chocolate spot disease of faba bean using potential rhizobacterial strains under field conditions in northwestern Ethiopia. Novel Res Microbiol J. 2023;7(3):1982–1994.
  • Pikovskaya RE. Mobilization of phosphorus in soil in concentration with vital activity of some microbial species. Microbiology. 1948;17:362–337.
  • Cappuccino JC, Sherman N. 1992. Microbiology: “a laboratory manual“. Benjamin/Cummings, New York, NY, USA.
  • Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indole acetic acid production by bacteria immobilized on the nitrocellulose membrane. Appl Environ Microbiol. 2004;57(2):535–538. doi: 10.1128/aem.57.2.535-538.1991.
  • Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA and Krieg NR, editor. Methods for general and molecular bacteriology. Washington DC: American Society of Microbiology; 1994. p. 607–654.
  • Ilesanmi OI, Adekunle AE, Omolaiye JA, et al. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci Afr. 2020;8:e00279. doi: 10.1016/j.sciaf.2020.e00279.
  • Venkata Naga Raju E, Divakar G. Production of pectinase by using Bacillus circulans isolated from dump yards of vegetable wastes. Int J Pharm Sci Res. 2013;4(7):2615–2622.
  • Zivkovic S, Stojanovic S, Ivanovic Z, et al. Screening of antagonistic activity of microorganisms against colletotrichum acutatum and colletotrichum gloeosporioides. Arch Biol Sci (Beogr). 2010;62(3):611–623. doi: 10.2298/ABS1003611Z.
  • Gebeyehu YM, Zewdu TA. Evaluation of the plant growth promotion effect of bacillus species on different varieties of tomato (solanum lycopersicum L.) seedlings. Adv Agric. 2022;1771147. 2022 doi: 10.1155/2022/1771147.
  • Hanounik SB, Hasanain MA. Inhibition of botrytis fabae in the philosopher of vicia faba leaves. FABIS Newslett. 1986;16:41–44.
  • Lwin KM, Myint MM, Tar T, et al. Isolation of plant hormone (indole-3-Acetic Acid - IAA) producing rhizobacteria and study on their effects on maize seedling. EJ. 2012;16(5):137–144. doi: 10.4186/ej.2012.16.5.137.
  • Gullino ML, Gilardi G, Garibaldi A. Evaluating severity of leaf spot of lettuce, caused by allophoma tropica, under a climate change scenario. Phytopathol Med. 2017;56:235–241.
  • Guo JH, Qi HY, Guo YH, et al. Biocontrol of tomato wilt by growth promoting rhizobacteria. Biol Control. 2004;29(1):66–72. doi: 10.1016/S1049-9644(03)00124-5.
  • Toghueo RMK, Eke P, Zabalgogeazcoa I, et al. Biocontrol and growth enhancement potential of two endophytic trichoderma spp. from terminalia catappa against the causative agent of common bean root rot (fusariumsolani). Biol. Control. 2016;96:8–20. doi: 10.1016/j.biocontrol.2016.01.008.
  • Raklami A, Bechtaoui N, Tahiri A, et al. Co-inoculation with rhizobacteria and mycorrhizae can improve wheat/faba bean intercrop performance under field conditions. Front Agron. 2021;3:1–9. doi: 10.3389/fagro.2021.734923.
  • Aloo BN, Tripathi V, Makumba BA, et al. Plant growth-promoting rhizobacterial biofertilizers for crop production: the past, present, and future. Front Plant Sci. 2022;13:1002448. doi: 10.3389/fpls.2022.1002448.
  • Rana A, Saharan B, Joshi M, et al. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol. 2011;61(4):893–900. doi: 10.1007/s13213-011-0211-z.
  • Egamberdieva D, Renella G, Wirth S, et al. Enzyme activities in the rhizosphere of plants. In: Shukla G, Varma A, editors. Soil enzymology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 149–166.
  • Goswami D, Janki N Thakker JN, Dhandhukia PCA, et al. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric. 2016;2(1):1127500. doi: 10.1080/23311932.2015.1127500.
  • Kim HS, Sang MK, Jeun YC, et al. Sequential selection and efficacy of antagonistic rhizobacteria for controlling phytophthora blight of pepper. Crop Prot. 2008;27(3-5):436–443. doi: 10.1016/j.cropro.2007.07.013.
  • Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT, et al. Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology. 2008;98(4):451–457. doi: 10.1094/PHYTO-98-4-0451.
  • Young CC, Kämpfer P, Shen FT, et al. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol. 2005;55(Pt 1):423–426. doi: 10.1099/ijs.0.633310.
  • Datta C, Basu PS. Indole acetic acid production by a rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res. 2000;155(2):123–127. doi: 10.1016/S0944-5013(00)80047-6.
  • El-Sersawy M, Hassan S, El-Ghamry A, et al. Implication of plant growth-promoting rhizobacteria of bacillus spp. as biocontrol agents against wilt disease caused by Fusarium oxysporum schlecht. in vicia faba L. Biomol Concepts. 2021;12(1):197–214. doi: 10.1515/bmc-2021-0020.
  • Passari AK, Mishra VK, Leo VV, et al. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from clerodendrum colebrookianum walp. Microbiol Res. 2016;193:57–73. doi: 10.1016/j.micres.2016.09.006.
  • Kunwar VS, Lamichhane J, Gauchan DP. Strategies to improve phosphorus availability in a sustainable agricultural system. Int J Innovat Sci Res Technol. 2018;3:323–331.
  • Youseif SH. Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Annals Agricultural Sci. 2018;63(1):25–35. doi: 10.1016/j.aoas.2018.04.002.