183
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multispecies colonisation and surface erosion on A106 GB industry-finished steel used in heat exchangers

, , &
Article: 2326292 | Received 15 Oct 2023, Accepted 28 Feb 2024, Published online: 11 Mar 2024

References

  • Xi G, Zhao X, Wang S, et al. Synergistic effect between sulfate-reducing bacteria and Pseudomonas aeruginosa on corrosion behavior of Q235 steel. Int J Electrochem Sci. 2020;15(1):1–17. doi: 10.20964/2020.01.38.
  • Achinas S, Charalampogiannis N, Euverink GJW. A brief recap of microbial adhesion and biofilms. Appl Sci. 2019;9(14):2801. doi: 10.3390/app9142801.
  • Tuck B, Watkin E, Forsyth M, et al. Evaluation of a novel, multi-functional inhibitor compound for prevention of biofilm formation on carbon steel in marine environments. Sci Rep. 2021;11(1):15697. doi: 10.1038/s41598-021-94827-9.
  • Graham MV, Cady NC. Nano and microscale topographies for the prevention of bacterial surface fouling. Coatings. 2014;4(1):37–59. doi: 10.3390/coatings4010037.
  • Leonard H, Jiang X, Arshavsky-Graham S, et al. Shining light in blind alleys: deciphering bacterial attachment in silicon microstructures. Nanoscale Horiz. 2022;7(7):729–742. doi: 10.1039/d2nh00130f.
  • Santos ALSD, Galdino ACM, Mello TPD, et al. What are the advantages of living in a community? A microbial biofilm perspective! Mem Inst Oswaldo Cruz. 2018;113(9):1–7. doi: 10.1590/0074-02760180212.
  • Queiroz GAD, Andrade JS, Malta TBS, et al. Biofilm formation and corrosion on carbon steel API 5LX60 in clayey soil. Mater Res. 2018;21(3):e20170338.
  • Tang M, Chen C, Zhu J, et al. Inhibition of bacterial adhesion and biofilm formation by a textured fluorinated alkoxyphosphazene surface. Bioact Mater. 2021;6(2):447–459.
  • Prithiraj A, Otunniyi IO, Osifo P, et al. Corrosion behaviour of stainless and carbon steels exposed to sulphate–reducing bacteria from industrial heat exchangers. Eng Fail Anal. 2019;104:977–986. doi: 10.1016/j.engfailanal.2019.06.042.
  • Zhu XY, Lubeck J, Kilbane JJ. Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol. 2003;69(9):5354–5363. doi: 10.1128/AEM.69.9.5354-5363.2003.
  • Procópio L. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. Environ Sci Pollut Res. 2021;28(21):26975–26989. doi: 10.1007/s11356-021-12544-2.
  • Bohinc K, Dražić G, Oder M, et al. Available surface dictates microbial adhesion capacity. Int J Adhes Adhes. 2014;50:265–272. doi: 10.1016/j.ijadhadh.2014.01.027.
  • Nouri A, Shirvan AR, Li Y, et al. Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Mater Manuf. 2023;1:100001. doi: 10.1016/j.smmf.2022.100001.
  • Bauer S, Arpa-Sancet MP, Finlay JA, et al. Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides. Langmuir. 2013;29(12):4039–4047. doi: 10.1021/la3038022.
  • Yoda I, Koseki H, Tomita M, et al. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiol. 2014;14(1):234. doi: 10.1186/s12866-014-0234-2.
  • Dezelic T, Schmidlin PR. Multi-species biofilm formation on dental materials and an adhesive patch. Oral Health Prev Dent. 2009;7(1):47–53.
  • Park JW, An JS, Lim WH, et al. Microbial changes in biofilms on composite resins with different surface roughness: an in vitro study with a multispecies biofilm model. J Prosthet Dent. 2019;122(5):493–4e1.
  • Yuan L, Hansen MF, Røder HL, et al. Mixed-Species biofilms in the food industry: current knowledge and novel control strategies. Crit Rev Food Sci Nutr. 2020;60(13):2277–2293. doi: 10.1080/10408398.2019.1632790.
  • Kuwada N, Fujii Y, Nakatani T, et al. Diamond-like carbon coating to inner surface of polyurethane tube reduces Staphylococcus aureus bacterial adhesion and biofilm formation. J Artif Organs. 2023:1–9. PMID: 37227545. doi: 10.1007/s10047-023-01403-1.
  • Prithiraj A, Tichapondwa S, Chirwa EM. Kinetic growth model and metabolic effect of a bacterial consortia from a petrochemical processing plant. Can J Chem Eng. 2023:1–11. doi: 10.1002/cjce.25154.
  • Dwivedi D, Lepková K, Becker T. Carbon steel corrosion: a review of key surface properties and characterization methods. RSC Adv. 2017;7(8):4580–4610. doi: 10.1039/C6RA25094G.
  • Zhao M, Tyson C, Chen HC, et al. Pseudomonas alliivorans sp. nov., a plant-pathogenic bacterium isolated from onion foliage in Georgia, USA. Syst Appl Microbiol. 2022;45(1):126278. doi: 10.1016/j.syapm.2021.126278.
  • Makuwa S, Green E, Fosso-Kankeu E, et al. A snapshot of the influent and effluent bacterial populations in a wastewater treatment plant in the North-West province, South Africa. Appl Microbiol. 2023;3(3):764–773. doi: 10.3390/applmicrobiol3030053.
  • Kadaifciler DG, Unsal T, Ilhan-Sungur E. Long-term evaluation of culturable fungi in a natural aging biofilm on galvanized steel surface. Johnson Matthey Technol Rev. 2024;6:1–27.
  • Kumar H, Sharma S, Kumari R. Corrosion inhibition and adsorption mechanism of morus nigra on mild steel in acidic medium: a sustainable and green approach. Vietnam J Chem. 2022;60(4):417–434.
  • Jeong G, Kim HJ, Kim KE, et al. Selective attachment of prokaryotes and emergence of potentially pathogenic prokaryotes on four plastic surfaces: adhesion study in a natural marine environment. Mar Pollut Bull. 2023;193:115149. doi: 10.1016/j.marpolbul.2023.115149.
  • Wang J, Yin Y. Clostridium species for fermentative hydrogen production: an overview. Int J Hydrogen Energy. 2021;46(70):34599–34625. doi: 10.1016/j.ijhydene.2021.08.052.
  • Balamurugan P, Chandramohan P, Rao TS. Corrosion management of carbon steel material: operational modes influence corrosion rate–an in vitro study. RSC Adv. 2016;6(47):41122–41129. doi: 10.1039/C6RA01070A.
  • Kim SK, Park IJ, Lee DY, et al. Influence of surface roughness on the electrochemical behavior of carbon steel. J Appl Electrochem. 2013;43(5):507–514. doi: 10.1007/s10800-013-0534-5.
  • Martin WF. Carbon–metal bonds: rare and primordial in metabolism. Trends Biochem Sci. 2019;44(9):807–818. doi: 10.1016/j.tibs.2019.04.010.
  • Antunes RA, Ichikawa RU, Martinez LG, et al. Characterization of corrosion products on carbon steel exposed to natural weathering and to accelerated corrosion tests. Int J Corros. 2014;2014:1–9. doi: 10.1155/2014/419570.
  • Kartsonakis IA, Charitidis CA. Corrosion protection evaluation of mild steel: the role of hybrid materials loaded with inhibitors. Appl Sci. 2020;10(18):6594. doi: 10.3390/app10186594.
  • Genchev G, Erbe A. Raman spectroscopy of mackinawite FeS in anodic iron sulfide corrosion products. J Electrochem Soc. 2016;163(6):C333–C338. doi: 10.1149/2.1151606jes.
  • Leban MB, Kosec T. Characterization of corrosion products formed on mild steel in deoxygenated water by raman spectroscopy and energy dispersive X-ray spectrometry. Eng Fail Anal. 2017;79:940–950. doi: 10.1016/j.engfailanal.2017.03.022.
  • Colomban P, Cherifi S, Despert G. Raman identification of corrosion products on automotive galvanized steel sheets. J Raman Spectroscopy. 2008;39(7):881–886. doi: 10.1002/jrs.1927.
  • Thalib S, Ikhsan M, Fonna S, et al. Identification of corrosion product on medium carbon steel under the exposure of banda aceh’s atmosphere. IOP Conf Ser: Mater Sci Eng. 2018;352(1):012004. doi: 10.1088/1757-899X/352/1/012004.
  • Sun H, Shi B, Lytle DA, et al. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system. Environ Sci Process Impacts. 2014;16(3):576–585. doi: 10.1039/c3em00544e.
  • Coates J. Interpretation of infrared spectra, a practical approach. Chichester: Wiley; 2000. p. 10815–10837.
  • Cheng B, Xia R, Zhang Y, et al. Characterization and causes analysis for algae blooms in large river system. Sustainable Cities Soc. 2019;51:101707. doi: 10.1016/j.scs.2019.101707.
  • Guo J, Zheng Y, Teng J, et al. Characteristics of spatial distribution for microbial ecology inside and outside source water reservoir. J Clean Prod. 2021;311:127697. doi: 10.1016/j.jclepro.2021.127697.
  • Bouchet P, Decock W, Lonneville B, et al. Marine biodiversity discovery: the metrics of new species descriptions. Front Mar Sci. 2023;10:929989. doi: 10.3389/fmars.2023.929989.
  • Smith WP, Wucher BR, Nadell CD, et al. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol. 2023;21(8):519–534. doi: 10.1038/s41579-023-00877-3.
  • Critchley M, Javaherdashti R. 2004. Metals, microbes and MIC—a review of microbiologically influenced corrosion. In: Proceeings of Corrosion and Prevention, Perth, Australia. p. 1–8. CAP04.
  • Bender O, Khoury J, Hirsch G, et al. Immunorecognition of Streptococcus mutans secreted proteins protects against caries by limiting tooth adhesion. J Dent. 2024;141:104805. doi: 10.1016/j.jdent.2023.104805.
  • Rozen R, Bachrach G, Zachs B, et al. Growth rate and biofilm thickness of Streptococcus sobrinus and Streptococcus mutans on hydroxapatite. APMIS. 2001;109(2):155–160. doi: 10.1034/j.1600-0463.2001.d01-117.x.
  • Tiburcio SRG, Macrae A, Peixoto RS, et al. Sulphate-reducing bacterial community structure from produced water of the periquito and galo de campina onshore oilfields in Brazil. Sci Rep. 2021;11(1):20311. doi: 10.1038/s41598-021-99196-x.
  • Refait P, Grolleau AM, Jeannin M, et al. Corrosion of carbon steel in marine environments: role of the corrosion product layer. Corros Mater Degrad. 2020;1(1):198–218. doi: 10.3390/cmd1010010.
  • Shah M. Iron oxide reduction by clostridial consortium: insights from physiological and genome analysis [PhD thesis]. New Brunswick (NJ): The State University of New Jersey; 2013. p. 1–114.
  • Oyekola OO, van Hille RP, Harrison ST. Kinetic analysis of biological sulphate reduction using lactate as carbon source and electron donor: effect of sulphate concentration. Chem Eng Sci. 2010;65(16):4771–4781. doi: 10.1016/j.ces.2010.05.014.