75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Promoting effect of biogenic AgNPs on Echinops macrochaetus for improving growth parameters and mitigating the toxic effect caused by salinity stress

, , , , , , & show all
Article: 2354710 | Received 10 Jan 2024, Accepted 08 May 2024, Published online: 05 Jun 2024

References

  • Kumar S, Li G, Yang J, et al. Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front Plant Sci. 2021;12:1. doi: 10.3389/fpls.2021.660409.
  • Islam F, Wang J, Farooq MA, et al. Rice responses and tolerance to salt stress: deciphering the physiological and molecular mechanisms of salinity adaptation, Mirza Hasanuzzaman, Masayuki Fujita, Kamrun Nahar, Jiban Krishna Biswas, Woodhead Publishing, U.K. In: Advances in rice research for abiotic stress tolerance. Elsevier; 2019. p. 791–15.
  • Ali Q, Daud M, Haider MZ, et al. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem. 2017;119:50–58. doi: 10.1016/j.plaphy.2017.08.010.
  • Parihar P, Singh S, Singh R, et al. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int. 2015;22(6):4056–4075. doi: 10.1007/s11356-014-3739-1.
  • Li Z, Zhou T, Zhu K, et al. Effects of salt stress on grain yield and quality parameters in rice cultivars with differing salt tolerance. Plants. 2023;12:3243. doi: 10.3390/plants12183243.
  • Angon PB, Tahjib-Ul-Arif M, Samin SI, et al. How do plants respond to combined drought and salinity stress?—a systematic review. Plants. 2022;11:2884. doi: 10.3390/plants11212884.
  • Bhattarai S, Biswas D, Fu Y-B, et al. Morphological, physiological, and genetic responses to salt stress in alfalfa: a review. Agronomy. 2020;10:577. doi: 10.3390/agronomy10040577.
  • Kamran M, Parveen A, Ahmar S, et al. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci. 2019;21(1):148. doi: 10.3390/ijms21010148.
  • Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem. 2021;160:257–268. doi: 10.1016/j.plaphy.2021.01.028.
  • Giraldo JP, Landry MP, Faltermeier SM, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. 2014;13(4):400–408. doi: 10.1038/nmat3890.
  • Yan A, Chen Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci. 2019;20(5):1003. doi: 10.3390/ijms20051003.
  • Steinitz B, Bilavendran AD. Thiosulfate stimulates growth and alleviates silver and copper toxicity in tomato root cultures. Plant Cell Tissue Organ Cult. 2011;107:355–363. doi: 10.1007/s11240-011-9987-6.
  • Monica RC, Cremonini R. Nanoparticles and higher plants. Caryologia. 2009;62:161–165. doi: 10.1080/00087114.2004.10589681.
  • Azeez L, Adejumo AL, Lateef A, et al. Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant Physiol Biochem. 2019;139:283–292. doi: 10.1016/j.plaphy.2019.03.030.
  • Sharma P, Bhatt D, Zaidi M, et al. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 2012;167(8):2225–2233. doi: 10.1007/s12010-012-9759-8.
  • Tejada-Alvarado JJ, Meléndez-Mori JB, Ayala-Tocto RY, et al. Influence of silver nanoparticles on photosynthetic pigment content and mineral uptake in pineapple seedlings grown in vitro under aluminum stress. Agronomy. 2023;13:1186. doi: 10.3390/agronomy13051186.
  • Funk VA, Bayer RJ, Keeley S, et al. Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol Skr. 2005;55:343–373.
  • Abegaz BM. Polyacetylenic thiophenes and terpenoids from the roots of Echinops pappii. Phytochemistry. 1991;30:879–881. doi: 10.1016/0031-9422(91)85271-Z.
  • Zamzami TA, Abdallah HM, Shehata IA, et al. Macrochaetosides a and B, new rare sesquiterpene glycosides from Echinops macrochaetus and their cytotoxic activity. Phytochem Lett. 2019;30:88–92. doi: 10.1016/j.phytol.2019.01.025.
  • Arroo R, Jacobs J, Van Gestel J, et al. Regulation of thiophene biosynthesis by sulphate in roots of marigolds. New Phytol. 1997;135:175–181. doi: 10.1046/j.1469-8137.1997.00637.x.
  • Khan S, Al-Qurainy F, Al-Hashimi A, et al. Effect of green synthesized ZnO-NPs on growth, antioxidant system response and bioactive compound accumulation in Echinops macrochaetus, a potential medicinal plant, and assessment of genome size (2C DNA content). Plants. 2023;12:1669. doi: 10.3390/plants12081669.
  • Mahakham W, Sarmah AK, Maensiri S, et al. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep. 2017;7(1):8263. doi: 10.1038/s41598-017-08669-5.
  • Alvarado AD, Bradford KJ, Hewitt JD. Osmotic priming of tomato seeds: effects on germination, field emergence, seedling growth, and fruit yield. J Am Soc Hortic Sci. 1987;112:427–432. doi: 10.21273/JASHS.112.3.427.
  • Ruan S, Xue Q, Tylkowska K. The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci Technol. 2002;30:61–67.
  • Lichtenthaler HK. [34] chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in enzymology. Elsevier; 1987. Vol. 148, p. 350–382.
  • Rao M. Cellular detoxifying mechanisms determine the age dependent injury in tropical trees exposed to SO2. J Plant Physiol. 1992;140:733–740. doi: 10.1016/S0176-1617(11)81031-X.
  • Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
  • Hanson A, Nelsen C, Pedersen A, et al. Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance 1. Crop Sci. 1979;19:489–493. doi: 10.2135/cropsci1979.0011183X001900040015x.
  • Sadhu A, Bhadra S, Bandyopadhyay M. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers. Ann Bot. 2016;118(6):1057–1070. doi: 10.1093/aob/mcw173.
  • Doležel J, Binarová P, Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant. 1989;31:113–120.
  • Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444(2):139–158. doi: 10.1016/j.abb.2005.10.018.
  • Taha RS, Seleiman MF, Shami A, et al. Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants. 2021;10:1040. doi: 10.3390/plants10061040.
  • Tavakkoli E, Rengasamy P, McDonald GK. High concentrations of Na + and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot. 2010;61(15):4449–4459. doi: 10.1093/jxb/erq251.
  • Ross A, Muñoz M, Rotstein BH, et al. A low cost and open access system for rapid synthesis of large volumes of gold and silver nanoparticles. Sci Rep. 2021;11(1):5420. doi: 10.1038/s41598-021-84896-1.
  • Kajbafvala A, Li M, Bahmanpour H, et al. Nano/microstructured materials: rapid, low-cost, and eco-friendly synthesis methods. J Nanoparticles. 2013;2013. doi: 10.1155/2013/530170.
  • Feregrino-Perez AA, Magaña-López E, Guzmán C, et al. A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci Hortic. 2018;238:126–137. doi: 10.1016/j.scienta.2018.03.060.
  • Prażak R, Święciło A, Krzepiłko A, et al. Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture. 2020;10:312. doi: 10.3390/agriculture10080312.
  • Parveen A, Rao S. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Cluster Sci. 2015;26:693–701. doi: 10.1007/s10876-014-0728-y.
  • Tarchoun N, Saadaoui W, Mezghani N, et al. The effects of salt stress on germination, seedling growth and biochemical responses of Tunisian squash (Cucurbita maxima Duchesne) germplasm. Plants. 2022;11:800. doi: 10.3390/plants11060800.
  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, et al. Plant responses to salt stress: adaptive mechanisms. Agronomy. 2017;7:18. doi: 10.3390/agronomy7010018.
  • Golbashy M, Ebrahimi M. Effects of drought stress on germination indices of corn hybrids (Zea mays L.). Electron J Plant Breed. 2012;3:664–670.
  • Soliman M, Qari SH, Abu-Elsaoud A, et al. Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiol Plant. 2020;42:1–16. doi: 10.1007/s11738-020-03131-y.
  • Abasi F, Raja NI, Mashwani ZUR, et al. Biogenic silver nanoparticles as a stress alleviator in plants: a mechanistic overview. Molecules. 2022;27(11):3378. doi: 10.3390/molecules27113378.
  • Jasim B, Thomas R, Mathew J, et al. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J. 2017;25(3):443–447. doi: 10.1016/j.jsps.2016.09.012.
  • Salachna P, Byczyńska A, Zawadzińska A, et al. Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy. 2019;9:610. doi: 10.3390/agronomy9100610.
  • Gupta SD, Agarwal A, Pradhan S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol Environ Saf. 2018;161:624–633. doi: 10.1016/j.ecoenv.2018.06.023.
  • Barabanov P, Gerasimov A, Blinov A, et al. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol Environ Saf. 2018;147:715–719. doi: 10.1016/j.ecoenv.2017.09.024.
  • Guzmán-Báez GA, Trejo-Téllez LI, Ramírez-Olvera SM, et al. Silver nanoparticles increase nitrogen, phosphorus, and potassium concentrations in leaves and stimulate root length and number of roots in tomato seedlings in a hormetic manner. Dose Response. 2021;19(4):15593258211044576. doi: 10.1177/15593258211044576.
  • Dar MI, Naikoo MI, Rehman F, et al. Proline accumulation in plants: roles in stress tolerance and plant development. Osmolytes and Plants Acclimation to Changing Environment: emerging Omics Technologies. 2016;155–166.
  • Meena M, Divyanshu K, Kumar S, et al. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon. 2019;5(12):e02952. doi: 10.1016/j.heliyon.2019.e02952.
  • Shaikhaldein HO, Al-Qurainy F, Nadeem M, et al. Biosynthesis and characterization of silver nanoparticles using Ochradenus arabicus and their physiological effect on Maerua oblongifolia raised in vitro. Sci Rep. 2020;10(1):17569. doi: 10.1038/s41598-020-74675-9.
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. doi: 10.1016/j.plaphy.2010.08.016.
  • Sarker U, Islam MT, Oba S. Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS One. 2018;13(11):e0206388. doi: 10.1371/journal.pone.0206388.
  • Haghighi Pak Z, Karimi N, Abbaspour H. Effects of silver nanoparticle exposure on growth, physiological and biochemical parameters of Dracocephalum moldavica L. Iran J Plant Physiol. 2017;7:2173–2183.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Khan I, Awan SA, Raza MA, et al. Silver nanoparticles improved the plant growth and reduced the sodium and chlorine accumulation in pearl millet: a life cycle study. Environ Sci Pollut Res Int. 2021;28(11):13712–13724. doi: 10.1007/s11356-020-11612-3.
  • Acharya P, Jayaprakasha GK, Crosby KM, et al. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep. 2020;10(1):5037. doi: 10.1038/s41598-020-61696-7.
  • Sadak MS. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Natl Res Cent. 2019;43:1–6. doi: 10.1186/s42269-019-0077-y.
  • Hojjat SS, Kamyab M. The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russ Agric Sci. 2017;43:61–65. doi: 10.3103/S1068367417010189.
  • Mohamed AKS, Qayyum MF, Abdel-Hadi AM, et al. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci. 2017;63:1736–1747. doi: 10.1080/03650340.2017.1300256.
  • Khan I, Raza MA, Awan SA, et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem. 2020;156:221–232. doi: 10.1016/j.plaphy.2020.09.018.
  • Dutta S, Mitra M, Agarwal P, et al. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal Behav. 2018;13(8):e1460048. doi: 10.1080/15592324.2018.1460048.
  • Sihi S, Bakshi S, Maiti S, et al. Analysis of DNA polymerase λ activity and gene expression in response to salt and drought stress in Oryza sativa Indica rice cultivars. J Plant Growth Regul. 2022;41:1499–1515. doi: 10.1007/s00344-021-10390-7.
  • Heikal YM, Şuţan NA, Rizwan M, et al. Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere. 2020;243:125430. doi: 10.1016/j.chemosphere.2019.125430.
  • Noirot M, Barre P, Duperray C, et al. Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot. 2003;92(2):259–264. doi: 10.1093/aob/mcg139.
  • Bennett MD, Price HJ, Johnston JS. Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot. 2008;101(6):777–790. doi: 10.1093/aob/mcm303.