103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and validation of a functional molecular marker for a CaAPRR2-like gene that controls green fruit colour in pepper

, , , , , , , , & show all
Article: 2356860 | Received 23 Nov 2023, Accepted 14 May 2024, Published online: 23 May 2024

References

  • Vázquez-Espinosa M, Álvarez-Romero M, González-de-Peredo AV, et al. Capsaicinoid content in the pericarp and placenta of bolilla peppers (Capsicum annuum L.) throughout the ripening of the fruit at two different stages of plant maturation. Agronomy. 2023;13(2):1. doi:10.3390/agronomy13020435.
  • Zou Z, Zou X. Geographical and ecological differences in pepper cultivation and consumption in China. Front Nutr. 2021;8:718517. doi:10.3389/fnut.2021.718517.
  • Song Z, Zhong J, Dong JC, et al. Mapping immature fruit colour‐related genes via bulked segregant analysis combined with whole‐genome re‐sequencing in pepper (Capsicum annuum). Plant Breed. 2022;2:141.
  • Jiménez-Viveros Y, Valiente-Banuet JI. Colored shading nets differentially affect the phytochemical profile, antioxidant capacity, and fruit quality of piquin peppers (Capsicum annuum L. var. glabriusculum). Horticulturae. 2023;9(11):1240.
  • Wang L, Zhong Y, Liu J, et al. Pigment biosynthesis and molecular genetics of fruit color in pepper. Plants. 2023;12(11):2156. doi:10.3390/plants12112156.
  • Baranski R, Goldman I, Nothnagel T, et al. Chapter 22 - Improving color sources by plant breeding and cultivation. In: Schweiggert R, editor. Woodhead publishing series in food science, technology and nutrition, Handbook on natural pigments in food and beverages. 2nd ed. Sawston, Cambridge, England: Woodhead Publishing; 2024. p. 507–10.
  • Jeong HB, Jang SJ, Kang MY, et al. Candidate gene analysis reveals that the fruit color locus C1 corresponds to PRR2 in pepper (Capsicum frutescens). Front Plant Sci. 2020;11:399. doi:10.3389/fpls.2020.00399.
  • Guo Q, Zhang T, Li C, et al. A new pepper F1 hybrid - ‘Qujiao no. 5’. China Veg. 2023;10:106–108.
  • Lee SY, Jang SJ, Jeong HB, et al. A mutation in zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). Plant J. 2021;106(6):1692–1707. doi:10.1111/tpj.15264.
  • Banerjee S, Bhattacharjee T, Maurya PK, et al. Genetic control of qualitative and quantitative traits in bell pepper crosses involving varied fruit colors and shapes. Int J Veg Sci. 2022;28(5):477–492. doi:10.1080/19315260.2021.2025186.
  • Li QH, Yang SH, Yu YN, et al. Comprehensive transcriptome-based characterization of differentially expressed genes involved in carotenoid biosynthesis of different ripening stages of capsicum. Sci Hortic. 2021;288:110311. doi:10.1016/j.scienta.2021.110311.
  • Liu Y, Lv J, Liu Z, et al. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.). Food Chem. 2020;306:125629. doi:10.1016/j.foodchem.2019.125629.
  • Wu XX, Xue LB, Chen JL, et al. EBB and flow of pigment of colour sweet pepper fruit in colour-changed period. J Changjiang Veg. 2005;5:38–40.
  • Wu XX, Xue LB, Zha DS, et al. Changes of major pigments of color sweet pepper during growth periods. Southwest China J Agric Sci. 2008;4:1040–1044.
  • Venkatesh J, Lee SY, Back S, et al. Update on the genetic and molecular regulation of the biosynthetic pathways underlying pepper fruit color and pungency. Curr Plant Biol. 2023;35–36:100303.
  • Kapoor L, Simkin AJ, George Priya Doss C, et al. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biol. 2022;22(1):27. doi:10.1186/s12870-021-03411-w.
  • Wahyuni Y, Ballester AR, Sudarmonowati E, et al. Metabolite biodiversity in pepper (capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry. 2011;72(11–12):1358–1370. doi:10.1016/j.phytochem.2011.03.016.
  • Matus Z, Deli J, Szabolcs J. Carotenoid composition of yellow pepper during ripening: isolation of beta-cryptoxanthin 5,6-epoxide. J Agric Food Chem. 1991;39:1907–1914.
  • Brand A, Borovsky Y, Meir S, et al. Paran, I. pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size. Planta. 2012;235(3):579–588. doi:10.1007/s00425-011-1530-9.
  • Brand A, Borovsky Y, Hill T, et al. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theor Appl Genet. 2014;127(10):2139–2148. doi:10.1007/s00122-014-2367-y.
  • Borovsky Y, Monsonego N, Mohan V, et al. The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. Plant J. 2019;99(1):41–55.
  • Hurtado-Hernandez H, Smith PG. Inheritance of mature fruit color in Capsicum annuum L. J Heredity. 1985;76(3):211–213. doi:10.1093/oxfordjournals.jhered.a110070.
  • Popovsky S, Paran I. Molecular genetics of the y locus in pepper: its relation to capsanthin-capsorubin synthase and to fruit color. Theor Appl Genet. 2000;10:86–89.
  • Lefebvre V, Kuntz M, Camara B, et al. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol Biol. 1998;36(5):785–789. doi:10.1023/A:1005966313415.
  • Huh JH, Kang BC, Nahm SH, et al. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor Appl Genet. 2001;102(4):524–530. doi:10.1007/s001220051677.
  • Jeong HB, Jang SJ, Kang MY, et al. Candidate gene analysis reveals that the fruit color locus C1 corresponds to PRR2 in pepper (capsicum frutescens). Frontiers in Plant Sience. 2020;11:399.
  • Pan Y, Bradley G, Pyke K, et al. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 2013;161(3):1476–1485. doi:10.1104/pp.112.212654.
  • Liu HQ, Jiao JQ, Liang XJ, et al. Map-based cloning, identification and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.). Theor Appl Genet. 2016;129(7):1247–1256. doi:10.1007/s00122-016-2700-8.
  • Jiao JQ, Liu HQ, Liu J, et al. Identification and functional characterization of APRR2 controlling green immature fruit color in cucumber (Cucumis sativus L.). Plant Growth Regul. 2017;83(2):233–243. doi:10.1007/s10725-017-0304-1.
  • Jeppe R. Functional markers in plants. Trends Plant Sci. 2003;8:554–560.
  • Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–4325. doi:10.1093/nar/8.19.4321.
  • Bassam BJ, Caetano-Anollés G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991;196(1):80–83. doi:10.1016/0003-2697(91)90120-i.
  • Jiang S, Kim GW, Han K, et al. Investigation of genetic factors regulating chlorophyll and carotenoid biosynthesis in red pepper fruit. Front Plant Sci. 2022;13:922963.
  • Borovsky Y, Paran I. Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theor Appl Genet. 2008;117(2):235–240. doi:10.1007/s00122-008-0768-5.