154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

ZmPGIP1 regulates stem strength by enhancing lignin and cellulose biosynthesis in Arabidopsis thaliana

, , , , &
Article: 2356867 | Received 01 Dec 2023, Accepted 13 May 2024, Published online: 21 May 2024

References

  • Bacete L, Mélida H, Miedes E, et al. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 2018;93(4):1–14.
  • Liu C, Yu H, Voxeur A, et al. FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. Sci Adv. 2023;9(10):eadf7714. doi:10.1126/sciadv.adf7714.
  • Wolf S. Cell wall signaling in plant development and defense. Annu Rev Plant Biol. 2022;73(1):323–353. doi:10.1146/annurev-arplant-102820-095312.
  • Kalunke RM, Tundo S, Benedetti M, et al. An update on polygalacturonase-inhibiting protein (PGIP), aleucine-rich repeat protein that protects crop plants against pathogens. Front Plant Sci. 2015;6(MAR):146. doi:10.3389/fpls.2015.00146.
  • Wang D, Yeats TH, Uluisik S, et al. Fruit softening: revisiting the role of pectin. Trends Plant Sci. 2018;23(4):302–310. doi:10.1016/j.tplants.2018.01.006.
  • Cho H, Lee J, Oh E. Leucine-rich repeat receptor-like proteins in plants: structure, function, and signaling. J Plant Biol. 2023;66(2):99–107. doi:10.1007/s12374-022-09374-1.
  • D’Ovidio R, Mattei B, Roberti S, et al. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochimica et Biophysica Acta. 2004;1696(2):237–244.
  • Man J, Harrington TA, Lally K, et al. Asymmetric evolution of protein domains in the leucine-Rich repeat receptor-like kinase family of plant signaling proteins. Mol Biol Evol. 2023;40(10):1–16. doi:10.1093/molbev/msad220.
  • Chen C, Zhao Y, Tabor G, et al. A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. New Phytol. 2023;238(3):1182–1197. doi:10.1111/nph.18781.
  • Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994;19(10):415–421. doi:10.1016/0968-0004(94)90090-6.
  • Liu N, Ma X, Zhou S, et al. Molecular and functional characterization of a polygalacturonase-inhibiting protein from cynanchum komarovii that confers fungal resistance in Arabidopsis. PLoS ONE. 2016;11(1):e0146959. doi:10.1371/journal.pone.0146959.
  • Hou W, Kumar Singh R, Zhao P, et al. Overexpression of polygalacturonase-inhibiting protein (PGIP) gene from hypericum perforatum alters expression of multiple defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens in tobacco. J Plant Physiol. 2020;253(August):153268. doi:10.1016/j.jplph.2020.153268.
  • Zhu G, Liang E, Lan X, et al. ZmPGIP3 gene encodes a polygalacturonase-inhibiting protein that enhances resistance to sheath blight in rice. Phytopathology. 2019;109(10):1732–1740.
  • Ferrari S, Vairo D, Ausubel FM, et al. Tandemly duplicated arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell. 2003;15(1):93–106. doi:10.1105/tpc.005165.
  • Ferrari S, Galletti R, Vairo D, et al. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact. 2006;19(8):931–936. doi:10.1094/MPMI-19-0931.
  • Joubert DA, Slaughter AR, Kemp G, et al. The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res. 2006;15(6):687–702. doi:10.1007/s11248-006-9019-1.
  • Powell AL, van Kan J, ten Have A, et al. Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact. 2000;13(9):942–950. doi:10.1094/MPMI.2000.13.9.942.
  • Wu T, Peng C, Li B, et al. OsPGIP1-mediated resistance to bacterial leaf streak in rice is beyond responsive to the polygalacturonase of Xanthomonas oryzae Pv. Oryzicola. Rice (N Y). 2019;12(1):90. doi:10.1186/s12284-019-0352-4.
  • Wang Z, Wan L, Xin Q, et al. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms. J Exp Bot. 2018;69(12):3141–3155. doi:10.1093/jxb/ery138.
  • Wei Y, Mao Y, Gao Y, et al. The polygalacturonase-inhibiting protein PpPGIP1, positively regulates vacuolar invertase activity via a protein-protein interaction with PpVIN2 in peach fruit. Sci Horticult. 2023;320:112209. doi:10.1016/j.scienta.2023.112209.
  • Zhang G, Hou X, Wang L, et al. Photo-sensitive leaf rolling 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytol. 2021;229(2):890–901. doi:10.1111/nph.16899.
  • Gholamnezhad J. Plants defense mechanisms against pathogens. 2017;6(2):24–32. doi:10.29252/pps.6.2.24.
  • Ma Q, Zhu H, Qiao M. Contribution of both lignin content and sinapyl monomer to disease resistance in tobacco. Plant Pathology. 2018;67(3):642–650. doi:10.1111/ppa.12767.
  • Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal. 1998;16(6):735–743.
  • Feng X, Xu Y, Peng L, et al. TaEXPB7-B, a β-Expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. J Plant Physiol. 2019;240:153004. doi:10.1016/j.jplph.2019.153004.
  • Zheng M, Gu S, Chen J, et al. Development and validation of a sensitive UPLC-MS/MS instrumentation and alkaline nitrobenzene oxidation method for the determination of lignin monomers in wheat straw. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1055-1056:178–184. doi:10.1016/j.jchromb.2017.04.034.
  • Alexandersson E, Becker JVW, Jacobson D, et al. Constitutive expression of a grapevine polygalacturonase-Inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Res Notes. 2011;4(1):493. doi:10.1186/1756-0500-4-493.
  • Chen X, Chen Y, Zhang L, et al. Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increases sheath blight resistance in rice. Rice. 2019;12(1):1–12. doi:10.1186/s12284-019-0318-6.
  • Zhang C, Feng C, Wang J, et al. Cloning, expression analysis and recombinant expression of a gene encoding a polygalacturonase-inhibiting protein from tobacco, Nicotiana tabacum. Heliyon. 2016;2(5):e00110. doi:10.1016/j.heliyon.2016.e00110.
  • Benedetti M, Pontiggia D, Raggi S, et al. Plant immunity triggered by engineered in vivo release of Oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A. 2015;112(17):5533–5538. doi:10.1073/pnas.1504154112.
  • Ferrari S, Savatin DV, Sicilia F, et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci. 2013;4:49. (doi: 10.3389/fpls.2013.00049.
  • Morales-Quintana L, Monsalve L, Bernales M, et al. Molecular dynamics simulation of the interaction of a raspberry polygalacturonase (RiPG) with a PG inhibiting protein (RiPGIP) isolated from ripening raspberry (Rubus idaeus Cv. Heritage) Fruit as a model to understand proteins interaction during fruit softening. J Mol Graph Model. 2023;122(April):108502. doi:10.1016/j.jmgm.2023.108502.
  • Dushnicky LG, Ballance GM, Sumner MJ, et al. The role of lignification as a resistance mechanism in wheat to a toxin-producing isolate of pyrenophora tritici-repentis. Canadian Journal of Plant Pathology. 1998;20(1):35–47. doi:10.1080/07060669809500443.
  • Li Q, Qin X, Qi J, et al. CsPrx25, a class III peroxidase in citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification. Hortic Res. 2020;7(1):192. doi:10.1038/s41438-020-00415-9.
  • Takashima T, Komori N, Uechi K, et al. Characterization of an antifungal β-1,3-glucanase from ficus microcarpa latex and comparison of plant and bacterial β-1,3-glucanases for fungal cell wall β-Glucan degradation. Planta. 2023;258(6):116. doi:10.1007/s00425-023-04271-4.
  • Cesarino I. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Curr Opin Biotechnol. 2019;56:209–214. doi:10.1016/j.copbio.2018.12.012.
  • Protsenko MA, Buza NL, Krinitsyna AA, et al. Polygalacturonase-inhibiting protein is a structural component of plant cell wall. Biochem Biokhimiia. 2008;73(10):1053–1062.
  • Nguema-Ona E, Moore JP, Fagerström AD, et al. Overexpression of the grapevine PGIP1 in tobacco results in compositional changes in the leaf arabinoxyloglucan network in the absence of fungal infection. BMC Plant Biol. 2013;13(1):46. doi:10.1186/1471-2229-13-46.
  • Tronchet M, BalaguÉ C, Kroj T, et al. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology. 2010;11(1):83–92. doi:10.1111/j.1364-3703.2009.00578.x.
  • Hoffmann L, Besseau S, Geoffroy P, et al. Silencing of hydroxycinnamoyl-coenzyme a shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell. 2004;16(6):1446–1465. doi:10.1105/tpc.020297.
  • Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant. 2015;8(5):689–708. doi:10.1016/j.molp.2015.03.012.
  • Bate NJ, Orr J, Ni W, et al. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci U S A. 1994;91(16):7608–7612. doi:10.1073/pnas.91.16.7608.
  • Mendu V, Stork J, Harris D, et al. Cellulose synthesis in two secondary cell wall processes in a single cell type. Plant Signal Behav. 2011;6(11):1638–1643. doi:10.4161/psb.6.11.17709.
  • Jang S, Lee B, Kim C, et al. The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol. 2003;53(3):357–369. doi:10.1023/b:plan.0000006940.89955.f1.
  • Kobe B, Kajava AV. The leucine-Rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11(6):725–732. doi:10.1016/s0959-440x(01)00266-4.
  • Wheeler, E.A. (1993). Methods in Lignin Chemistry. S.Y. Lin ‘C.W. Dence (eds.), 578 pp., illus., 1992. Springer Series in Wood Science. Springer Verlag, Berlin, Heidelberg, etc. ISBN 3-540-50295-5. Price DM 480.00 (hardcover).