204
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Aging, partial reprogramming and bioelectric fields: unveiling the path to cellular rejuvenation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2358999 | Received 29 Jan 2024, Accepted 17 May 2024, Published online: 28 May 2024

References

  • Lemoine M. Defining aging. Biol Philos. 2020;35(5):1. doi:10.1007/s10539-020-09765-z.
  • López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–12. doi:10.1016/j.cell.2013.05.039.
  • Papamichos-Chronakis M, Peterson CL. Chromatin and the genome integrity network. Nat Rev Genet. 2013;14(1):62–75. doi:10.1038/nrg3345.
  • Mladenov M, Lubomirov L, Grisk O. Oxidative stress, reductive stress and antioxidants in vascular pathogenesis and aging. Antioxidants. 2023;12(5):1126. doi:10.3390/antiox12051126.
  • Aguilera A, García-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47(1):1–32. doi:10.1146/annurev-genet-111212-133232.
  • Nian L, Xiaohua L, Rongcheng L, et al. Types of DNA damage and research progress. Nucleosides Nucleotides Nucleic Acids. 2023:1–21. doi:10.1080/15257770.2023.2277194.
  • Lu W, Zhang Y, Liu D, et al. Telomeres-structure, function, and regulation. Exp Cell Res. 2013;319(2):133–141. doi:10.1016/j.yexcr.2012.09.005.
  • Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1(1):72–76. doi:10.1038/35036093.
  • Rossiello F, Jurk D. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol. 2022;24(2):135–147. doi:10.1038/s41556-022-00842-x.
  • Hetz C, Zhang K. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421–438. doi:10.1038/s41580-020-0250-z.
  • Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84(1):435–464. doi:10.1146/annurev-biochem-060614-033955.
  • Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20(7):421–435. doi:10.1038/s41580-019-0101-y.
  • Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–332. doi:10.1038/nature10317.
  • Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol. 2022;23(1):56–73. doi:10.1038/s41580-021-00411-4.
  • Guo X, Asthana P, Gurung S, et al. Regulation of age-associated insulin resistance by MT1-MMP-mediated cleavage of insulin receptor. Nat Commun. 2022;13(1):3749. doi:10.1038/s41467-022-31563-2.
  • Guo X, Asthana P, Gurung S, et al. Regulation of age-associated insulin resistance by MT1-MMP-mediated cleavage of insulin receptor. Nat Commun. 2022;13(1):3749. doi:10.1038/s41467-022-31563-2.
  • Papadopoli D, Boulay K, Kazak L. mTOR as a central regulator of lifespan and aging. F1000Res. 2019;8:F1000 Faculty Rev-998. 2019;8. doi:10.12688/f1000research.17196.1.
  • Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–241. doi:10.1016/j.arr.2011.12.005.
  • Ge Y, Zhou M, Chen C, et al. Role of AMPK mediated pathways in autophagy and aging. Biochimie. 2022;195:100–113. doi:10.1016/j.biochi.2021.11.008.
  • Guo Y, Guan T, Shafiq K, et al. Mitochondrial dysfunction in aging. Ageing Res Rev. 2023;88:101955. doi:10.1016/j.arr.2023.101955.
  • Müller M, Ahumada-Castro U, Sanhueza M, et al. Mitochondria and calcium regulation as basis of neurodegeneration associated with aging. Front Neurosci. 2018;12:470. doi:10.3389/fnins.2018.00470.
  • Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95. doi:10.1038/s41580-020-00314-w.
  • Correia-Melo C, Passos JF. Demystifying the role of mitochondria in senescence. Mol Cell Oncol. 2016;3(4):e1162896. doi:10.1080/23723556.2016.1162896.
  • Park MH, Kim DH, Lee EK, et al. Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res. 2014;37(12):1507–1514. doi:10.1007/s12272-014-0474-6.
  • Schmitt CA, Wang B, Demaria M. Senescence and cancer—role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19(10):619–636. doi:10.1038/s41571-022-00668-4.
  • Liu B, Qu J, Zhang W, et al. A stem cell aging framework, from mechanisms to interventions. Cell Rep. 2022;41(3):111451. doi:10.1016/j.celrep.2022.111451.
  • Waś H, Czarnecka J. [Stem cells and senescence]. Postepy Biochem. 2014;60(2):161–176.
  • Picerno A, Stasi A, Franzin R, et al. Why stem/progenitor cells lose their regenerative potential. World J Stem Cells. 2021;13(11):1714–1732. doi:10.4252/wjsc.v13.i11.1714.
  • Fafián-Labora JA, O’Loghlen A. Classical and nonclassical intercellular communication in senescence and ageing. Trends Cell Biol. 2020;30(8):628–639. doi:10.1016/j.tcb.2020.05.003.
  • Kabacik S, Lowe D, Fransen L, et al. The relationship between epigenetic age and the hallmarks of aging in human cells. Nat Aging. 2022;2(6):484–493. doi:10.1038/s43587-022-00220-0.
  • Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–425. doi:10.1159/000452444.
  • Wang X, Qu J, Li J, et al. Epigenetic reprogramming during somatic cell nuclear transfer: recent progress and future directions. Front Genet. 2020;11:205. doi:10.3389/fgene.2020.00205.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi:10.1016/j.cell.2006.07.024.
  • Simpson DJ, Olova NN, Chandra T. Cellular reprogramming and epigenetic rejuvenation. Clin Epigenetics. 2021;13(1):170. doi:10.1186/s13148-021-01158-7.
  • Singh PB, Zhakupova A. Age reprogramming: cell rejuvenation by partial reprogramming. Development. 2022;149(22): dev200755. doi:10.1242/dev.200755.
  • Rodríguez-Matellán A, Alcazar N, Hernández F, et al. In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Rep. 2020;15(5):1056–1066. doi:10.1016/j.stemcr.2020.09.010.
  • Ocampo A, Reddy P, Martinez-Redondo P, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167(7):1719–1733.e12. doi:10.1016/j.cell.2016.11.052.
  • Browder KC, Reddy P, Yamamoto M, et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat Aging. 2022;2(3):243–253. doi:10.1038/s43587-022-00183-2.
  • Levin M, Martyniuk CJ. The bioelectric code: an ancient computational medium for dynamic control of growth and form. Biosystems. 2018;164:76–93. doi:10.1016/j.biosystems.2017.08.009.
  • Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and ­differentiation. Stem Cell Rev Rep. 2009;5(3):231–246. doi:10.1007/s12015-009-9080-2.
  • Abdul Kadir L, Stacey M, Barrett-Jolley R. Emerging roles of the membrane potential: action beyond the action potential. Front Physiol. 2018;9:1661. doi:10.3389/fphys.2018.01661.
  • Binggeli R, Weinstein RC. Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol. 1986;123(4):377–401. doi:10.1016/s0022-5193(86)80209-0.
  • Cone CD.Jr. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol. 1971;30(1):151–181. doi:10.1016/0022-5193(71)90042-7.
  • Sempou E, Kostiuk V, Zhu J, et al. Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR. Nat Commun. 2022;13(1):6681. doi:10.1038/s41467-022-34363-w.
  • Laursen L. Salamander cells remember their origins in limb regeneration. Nature. 2009; doi:10.1038/news.2009.614.
  • Flowers GP, Sanor LD, Crews CM. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration. Elife. 2017;6:e25726..
  • Ozkucur N, Epperlein HH, Funk RH. Ion imaging during axolotl tail regeneration in vivo. Dev Dyn. 2010;239(7):2048–2057. doi:10.1002/dvdy.22323.
  • Reid B, Song B, Zhao M. Electric currents in Xenopus tadpole tail regeneration. Dev Biol. 2009;335(1):198–207. doi:10.1016/j.ydbio.2009.08.028.
  • Adams DS, Masi A, Levin M. H + pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development. 2007;134(7):1323–1335. doi:10.1242/dev.02812.
  • McLaughlin KA, Levin M. Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev Biol. 2018;433(2):177–189. doi:10.1016/j.ydbio.2017.08.032.
  • Tseng A, Levin M. Cracking the bioelectric code: probing endogenous ionic controls of pattern formation. Commun Integr Biol. 2013;6(1):e22595. doi:10.4161/cib.22595.
  • Adams DS, Uzel SGM, Akagi J, et al. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol. 2016;594(12):3245–3270. doi:10.1113/JP271930.
  • George LF. Developmental bioelectricity: Investigating the role of ion channels in development. University of Colorado Denver, Anschutz Medical Campus ProQuest Dissertations Publishing. 2021; p. 28774803.
  • Pai VP, Aw S, Shomrat T, et al. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development. 2012;139(2):313–323. doi:10.1242/dev.073759.
  • Li H, Rao A, Hogan PG. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 2011;21(2):91–103. doi:10.1016/j.tcb.2010.09.011.
  • Di Giorgio E, Brancolini C. Regulation of class IIa HDAC activities: it is not only matter of subcellular localization. Epigenomics. 2016;8(2):251–269. doi:10.2217/epi.15.106.
  • Backs J, Backs T, Bezprozvannaya S, et al. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol. 2008;28(10):3437–3445. doi:10.1128/MCB.01611-07.