9
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AMEP412 as a potent antifungal agent against rice blast fungus Magnaporthe oryzae in vivo and in vitro

, , &
Article: 2367736 | Received 13 Mar 2024, Accepted 07 Jun 2024, Published online: 18 Jun 2024

References

  • Devanna BN, Jain P, Solanke AU, et al. Understanding the dynamics of blast resistance in rice-Magnaporthe oryzae interactions. J Fungi (Basel). 2022;8(6):584. doi: 10.3390/jof8060584.
  • Huang M. The decreasing area of hybrid rice production in China: causes and potential effects on Chinese rice self-sufficiency. Food Sec. 2022;14(1):267–272. doi: 10.1007/s12571-021-01199-z.
  • Younas MU, Wang G, Du H, et al. Approaches to reduce rice blast disease using knowledge from host resistance and pathogen pathogenicity. Int J Mol Sci. 2023;24(5):4985. doi: 10.3390/ijms24054985.
  • Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol. 2009;7(3):185–195. doi: 10.1038/nrmicro2032.
  • Nalley L, Tsiboe F, Durand-Moratv A, et al. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS One. 2016;11(12):e0167295. doi: 10.1371/journal.pone.0167295.
  • Maclean JL, Dawe DC, Hardy B, et al. Rice Almanac: source book for the most important economic activity on earth. 3rd ed. Wallingford, UK CABI Pub: International Rice Research Institute (IRRI); 2002.
  • Feng S, Cao Y, Xu T, et al. Rice leaf blast classification method based on fused features and one-dimensional deep convolutional neural network. Remote Sens. 2021;13(16):3207. doi: 10.3390/rs13163207.
  • Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA. 2007;104(42):16402–16409. doi: 10.1073/pnas.0708013104.
  • Hirooka T, Ishii H. Chemical control of plant diseases. J Gen Plant Pathol. 2013;79(6):390–401. doi: 10.1007/s10327-013-0470-6.
  • Kongcharoen N, Kaewsalong N, Dethoup T. Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand. Sci Rep. 2020;10(1):16233. doi: 10.1038/s41598-020-73222-w.
  • Bezerra GA, Chaibub AA, Oliveira MIS, et al. Evidence of Pyricularia oryzae adaptability to tricyclazole. J Environ Sci Health B. 2021;56(10):869–876. doi: 10.1080/03601234.2021.1971913.
  • Wu X, Chen Y, Chen C, et al. Combining the microbial agent Rhodopseudomonas palustris strain PSB-06 with fungicides for controlling rice blast. Front Sustain Food Syst. 2022;6:1072156. doi: 10.3389/fsufs.2022.1072156.
  • Fei L, Hao L. In vitro and ex vivo antifungal activities of metconazole against the rice blast fungus Pyricularia oryzae. Molecules. 2024;29(6):1353. doi: 10.3390/molecules29061353.
  • Shen W, Liu R, Wang J, et al. Characterization of a broad-spectrum antifungal strain, Streptomyces graminearus STR-1, against Magnaporthe oryzae. Front Microbiol. 2024;15:1298781. doi: 10.3389/fmicb.2024.1298781.
  • Ayilara MS, Adeleke BS, Akinola SA, et al. Biopesticides as a promising alternative to synthetic pesticides: a case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol. 2023;14:1040901. doi: 10.3389/fmicb.2023.1040901.
  • Chen Z, Zhao L, Chen WQ, et al. Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae. Biotechnol Biotechnol Equip. 2020;34(1):714–724. doi: 10.1080/13102818.2020.1803766.
  • Wu L, Xiao W, Chen G, et al. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of rice blast fungus Magnaporthe oryzae. J Biotechnol. 2018;282:1–9. doi: 10.1016/j.jbiotec.2018.04.016.
  • Dong YL, Li H, Rong SH, et al. Isolation and evaluation of Bacillus amyloliquefaciens Rdx5 as a potential biocontrol agent against Magnaporthe oryzae. Biotechnol Biotechnol Equip. 2019;33(1):408–418. doi: 10.1080/13102818.2019.1578692.
  • Law JWF, Ser HL, Khan TM, et al. The potential of streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017;8:3. doi: 10.3389/fmicb.2017.00003.
  • Rebollar A, López-García B. A novel cecropin a-derived peptide as specific inhibitor of appressoria in Magnaporthe oryzae. J Plant Pathol Microbiol. 2016;07(03):336. doi: 10.4172/2157-7471.1000336.
  • Ma Z, Zhang S, Sun K, et al. Identification and characterization of a cyclic lipopeptide iturin A from a marine-derived Bacillus velezensis 11-5 as a fungicidal agent to Magnaporthe oryzae in rice. J Plant Dis Prot. 2020;127(1):15–24. doi: 10.1007/s41348-019-00282-0.
  • Sagehashi Y, Ashizawa T, Takaku H, et al. Defensin AFP1 inhibits appressorium formation and penetration of rice cells by the rice blast fungus Magnaporthe oryzae. J Plant Pathol. 2019;101(4):1183–1186. doi: 10.1007/s42161-019-00312-8.
  • Liu Q, Shen YR, Yin K. The antimicrobial activity of protein elicitor AMEP412 against Streptomyces scabiei. World J Microbiol Biotechnol. 2020;36(1):18. doi: 10.1007/s11274-019-2794-7.
  • Shen YR, Li JW, Xiang JL, et al. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express. 2019;9(1):117. doi: 10.1186/s13568-019-0822-5.
  • Wang NN, Gao XN, Yan X, et al. Purification, characterization, and heterologous expression of an antifungal protein from the endophytic Bacillus subtilis strain em7 and its activity against Sclerotinia sclerotiorum. Genet Mol Res. 2015;14(4):15488–15504. doi: 10.4238/2015.November.30.27.
  • Miao J, Zhao G, Wang B, et al. Three point-mutations in cytochrome B confer resistance to trifloxystrobin in Magnaporthe oryzae. Pest Manag Sci. 2020;76(12):4258–4267. doi: 10.1002/ps.5990.
  • Chen Y, Yao J, Wang WX, et al. Effect of epoxiconazole on rice blast and rice grain yield in China. Eur J Plant Pathol. 2013;135(4):675–682. doi: 10.1007/s10658-012-0104-4.
  • Zhou AA, Li RY, Mo FX, et al. Natural product citronellal can significantly disturb chitin synthesis and cell wall integrity in Magnaporthe oryzae. J Fungi (Basel). 2022;8(12):1310. doi: 10.3390/jof8121310.
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2.
  • DeLano WL. The PyMOL molecular graphics system; 2002. http://www.pymol.org.
  • Fan JB, Bai PF, Ning YS, et al. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host Microbe. 2018;23(4):498–510.e5. doi: 10.1016/j.chom.2018.03.003.
  • Tang W, Jiang H, Zheng Q, et al. Isopropylmalate isomerase MoLeul orchestrates leucine biosynthesis, fungal development, and pathogenicity in Magnaporthe oryzael. Appl Microbiol Biotechnol. 2019;103(1):327–337. doi: 10.1007/s00253-018-9456-9.
  • Yu L, Li K, Zhang J, et al. Antimicrobial peptides and macromolecules for combating microbial infections: from agents to interfaces. ACS Appl Bio Mater. 2022;5(2):366–393. doi: 10.1021/acsabm.1c01132.
  • Talapko J, Meštrović T, Juzbašić M, et al. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications. Antibiotics (Basel). 2022;11(10):1417. doi: 10.3390/antibiotics11101417.
  • Zhang Y, Yang Y, Zhang L, et al. Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide. Front Microbiol. 2023;14:1201624. doi: 10.3389/fmicb.2023.1201624.
  • Li Z, Hu R, Zhang C, et al. Governmental regulation induced pesticide retailers to provide more accurate advice on pesticide use to farmers in China. Pest Manag Sci. 2022;78(1):184–192. doi: 10.1002/ps.6622.
  • He Y, Zhu M, Huang J, et al. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Can J Plant Pathol. 2019;41(1):47–59. doi: 10.1080/07060661.2018.1564792.
  • Prasanna Kumar MK, Amruta N, Manjula CP, et al. Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Sci Techn. 2017;27(4):581–599. doi: 10.1080/09583157.2017.1323323.
  • Yan X, Talbot NJ. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol. 2016;34:147–153. doi: 10.1016/j.mib.2016.10.001.
  • Yoshida S, Koitabashi M, Nakamura J, et al. Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. J Appl Microbiol. 2015;119(1):215–224. doi: 10.1111/jam.12832.
  • Rebollar A, López-García B. PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae. Mol Plant Microbe Interact. 2013;26(12):1407–1416. doi: 10.1094/MPMI-04-13-0110-R.
  • Spence C, Alff E, Johnson C, et al. Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol. 2014;14(1):130. doi: 10.1186/1471-2229-14-130.
  • Yin ZY, Feng WZ, Chen C, et al. Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae. Autophagy. 2020;16(5):900–916. doi: 10.1080/15548627.2019.1644075.
  • Liu Q, Shen YR, Yin K. Optimised production of protein elicitor AMEP412 by Bacillus subtilis BU412 through response surface methodology. Biotechnol Biotechnol Equip. 2021;35(1):1058–1064. doi: 10.1080/13102818.2021.1953402.
  • Feng WZ, Yin ZY, Wu HW, et al. Balancing of the mitotic exit network and cell wall integrity signaling governs the development and pathogenicity in Magnaporthe oryzae. PLoS Pathog. 2021;17(1):e1009080. doi: 10.1371/journal.ppat.1009080.
  • Saunders DG, Dagdas YF, Talbot NJ. Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Plant Cell. 2010;22(7):2417–2428. doi: 10.1105/tpc.110.074492.
  • Chen Y, Wu XY, Chen CY, et al. Proteomics analysis reveals the molecular mechanism of MoPer1 regulating the development and pathogenicity of Magnaporthe oryzae. Front Cell Infect Microbiol. 2022;12:926771. doi: 10.3389/fcimb.2022.926771.
  • Rogers AM, Egan MJ. Septum-associated microtubule organizing centers within conidia support infectious development by the blast fungus Magnaporthe oryzae. Fungal Genet Biol. 2023;165:103768. doi: 10.1016/j.fgb.2022.103768.
  • Salman EK, Ghoniem KE, Badr ES, et al. The potential of dimetindene maleate inducing resistance to blast fungus Magnaporthe oryzae through activating the salicylic acid signaling pathway in rice plants. Pest Manag Sci. 2022;78(2):633–642. doi: 10.1002/ps.6673.
  • Zhao J, Chen Y, Ding Z, et al. Identification of propranolol and derivatives that are chemical inhibitors of phosphatidate phosphatase as potential broad-spectrum fungicides. Plant Commun. 2024;5(1):100679. doi: 10.1016/j.xplc.2023.100679.
  • Zhang C, Yang M. Antimicrobial peptides: from design to clinical application. Antibiotics (Basel). 2022;11(3):349. doi: 10.3390/antibiotics11030349.
  • Liu Q, Wang S, Du Y, et al. Improved drought tolerance in soybean by protein elicitor AMEP412 induced ROS accumulation and scavenging. Biotechnol Biotechnol Equip. 2022;36(1):401–412. doi: 10.1080/13102818.2022.2089596.
  • Omoboye OO, Oni FE, Batool H, et al. Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism. Front Plant Sci. 2019;10:901. doi: 10.3389/fpls.2019.00901.