171
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transferability of new methods for health technology assessment in the field of diabetes between early and late adopters’ countries

, , , , ORCID Icon, , , , , , , , , , , , , , , , , , , & show all
Article: 2371354 | Received 16 May 2024, Accepted 19 Jun 2024, Published online: 25 Jun 2024

References

  • World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation; 2006. Available from: https://www.who.int/publications/i/item/definition-and-diagnosis-of-diabetes-mellitus-and-intermediate-hyperglycaemia. (Accessed 2 February 2024).
  • GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic ­analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):1–10. doi: 10.1016/S0140-6736(23)01301-6.
  • American Diabetes Federation. ADF Diabetes Atlas 10th Edition; 2021, Available at: https://diabetesatlas.org. (Accessed 5 February 2024).
  • Holman R, Paul S, Bethel A, et al. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med. 2008;359(15):1565–1576. doi: 10.1056/NEJMoa0806359.
  • Control D, C. T. of Diabetes Interventions, C. D. R. Group. Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983–2005). Arch Intern Med. 14:1307–1316. 2009; doi: 10.1001/archinternmed.2009.193.
  • Herrett E, Gallagher AM, Bhaskaran K, et al. Data ­resource profile: clinical practice research datalink (CPRD). Int J Epidemiol. 2015;44(3):827–836. doi: 10.1093/ije/dyv098.
  • Schram M, Sep S, van der Kallen C, et al. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its ­comorbidities. Eur J Epidemiol. 2014;29(6):439–451. doi: 10.1007/s10654-014-9889-0.
  • Maciá-Martínez M, Gil M, Huerta C, et al. BIFAP Team Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP) A data resource for pharmacoepidemiology in Spain. Pharmacoepidemiol Drug Saf. 2020;29(10):1236–1245. doi: 10.1002/pds.5006.
  • Wild S, Fischbacher C, McKnight J, (on Behalf of the Scottish Diabetes Research Network Epidemiology Group). Using large diabetes databases for research. J Diabetes Sci Technol. 2016;10(5):1073–1078. doi: 10.1177/1932296816645120.
  • Cunningham S, McAlpine R, Leese G, et al. Using web technology to support population-based diabetes care. J Diabetes Sci Technol. 2011;5(3):523–534. doi: 10.1177/193229681100500307.
  • Gudbjörnsdottir S, Cederholm J, Nilsson PM, et al. The National Diabetes Register in Sweden: an implementation of the St. Vincent Declaration for Quality Improvement in Diabetes Care. Diabetes Care. Diabetes Care. 2003;26(4):1270–1276. doi: 10.2337/diacare.26.4.1270.
  • Hogervorst MA, Pontén J, Vreman RA, et al. Real world data in health technology assessment of complex health technologies. Front Pharmacol. 2022;13:837302. doi: 10.3389/fphar.2022.837302.
  • Kamusheva M, Németh B, Zemplényi A, et al. Using real-world evidence in healthcare from Western to Central and Eastern Europe: a review of existing barriers. J Comp Eff Res. 2022;11(12):905–913. doi: 10.2217/cer-2022-0065.
  • Németh B, Kamusheva M, Mitkova Z, et al. Guidance on using real-world evidence from Western Europe in Central and Eastern European health policy decision making. J Comp Eff Res. 2023;12(4):e220157. doi: 10.57264/cer-2022-0157.
  • Mandrik O, Knies S, Kalo Z, et al. Reviewing transferability in economic evaluations originating from Easter Europe. Int J Technol Assess Health Care. 2015;31(6):434–441. doi: 10.1017/S0266462315000677.
  • Németh B, Goettsch W, Kristensen FB, et al. The transferability of health technology assessment: the European perspective with focus on central and Eastern European countries. Expert Rev Pharmacoecon Outcomes Res. 2020;20(4):321–330. doi: 10.1080/14737167.2020.1779061.
  • Jaksa A, Arena P, Chan K, et al. Transferability of real-world data across borders for regulatory and health technology assessment decision-making. Front Med (Lausanne). 2022;9:1073678. doi: 10.3389/fmed.2022.1073678.
  • McNair D, Lumpkin M, Kern S, et al. Use of RWE to ­inform regulatory, public health policy, and intervention priorities for the developing world. Clin Pharmacol Ther. 2022;111(1):44–51. doi: 10.1002/cpt.2449.
  • Schloemer T, Schröder-Bäck P. Criteria for evaluating transferability of health interventions: a systematic ­review and thematic synthesis. Implementation Sci. 2018;13(1):88. doi: 10.1186/s13012-018-0751-8.
  • Heupink L, Peacocke E, Sæterdal I, et al. Considerations for transferability of health technology assessments: a scoping review of tools, methods, and practices. Int J Technol Assess Health Care. 2022;38(1):e78. 1–11 doi: 10.1017/S026646232200321X.
  • Drummond M, Manca A, Sculpher M. Increasing the generalizability of economic evaluations: recommendations for the design, analysis, and reporting of studies. Int J Technol Assess Health Care. 2005;21(2):165–171. doi: 10.1017/S0266462305050221.
  • Carrillo-Moreno J, Pérez-Gandía C, Sendra-Arranz R, et al. Long short-term memory neural network for glucose prediction. Neural Comput & Applic. 2021;33(9):4191–4203. doi: 10.1007/s00521-020-05248-0.
  • Beck R, Tamborlane W, Bergenstal R, for., et al. The T1D exchange clinic network the T1D exchange clinic registry. J Clin Endocrinol Metab. 2012;97(12):4383–4389. doi: 10.1210/jc.2012-1561.
  • Werkman N, García-Sáez G, Nielen J, et al. Disease severity-based subgrouping of type 2 diabetes does not parallel differences in quality of life: the Maastricht Study. Diabetologia. 2024;67(4):690–702. doi: 10.1007/s00125-023-06082-4.
  • Bishop C. Pattern Recognition and Machine Learning. Secaucus, NJ: Springer-Verlag New York, Inc; 2006.
  • Ihalapathirana A, Chalkou K, Siirtola P, et al. Explainable Artificial Intelligence to predict clinical outcomes in type 1 diabetes and relapsing-remitting multiple sclerosis adult patients. Inf Med Unlocked. 2023;42:101349. doi: 10.1016/j.imu.2023.101349.
  • Lavikainen P, Chandra G, Siirtola P, et al. Data-driven identification of long-term glycemia clusters and their individualized predictors in finnish patients with type 2 diabetes. Clin Epidemiol. 2023;15:13–29. doi: 10.2147/CLEP.S380828.
  • Pérez-Gandía C, Facchinetti A, Sparacino G, et al. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther. 2010;12(1):81–88. doi: 10.1089/dia.2009.0076.
  • Wang S, Nickel G, Venkatesh K, et al. AI-based diabetes care: risk prediction models and implementation concerns. NPJ Digit Med. 2024;7(1):36. doi: 10.1038/s41746-024-01034-7.
  • Akehurst R, Murphy LA, Solà-Morales O, et al. Using real-world data in the health technology assessment of pharmaceuticals: strengths, difficulties, and a pragmatic way forward. Value Health. 2023;26(4S):11–19. doi: 10.1016/j.jval.
  • Graili P, Guertin JR, Chan KKW, et al. Integration of real-world evidence from different data sources in health technology assessment. J Pharm Pharm Sci. 2023;26:11460. doi: 10.3389/jpps.2023.11460.
  • Ghaffar N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discov Artif Intell. 2023;3(1):5. doi: 10.1007/s44163-023-00049-5.