72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The rhizosphere of the pioneer plant Dicranopteris dichotoma (Thunb.) Bernh. contains powerful and robust rhizosphere growth-promoting bacteria

, , , , , , , , & show all
Article: 2374506 | Received 18 Dec 2023, Accepted 25 Jun 2024, Published online: 07 Jul 2024

References

  • Li Y, Kong F, Li S, et al. Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. J Hazard Mater. 2023;456:1. doi: 10.1016/j.jhazmat.2023.131706.
  • Wang Z, Geng Y, Liang T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Sci Total Environ. 2020;713:136439. doi: 10.1016/j.scitotenv.2019.136439.
  • Molina-Santiago C, Matilla MA. Chemical fertilization: A short-term solution for plant productivity? Microb Biotechnol. 2020;13(5):1311–14. doi: 10.1111/1751-7915.13515.
  • Ling N, Wang T, Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nat Commun. 2022;13(1):836. doi: 10.1038/s41467-022-28448-9.
  • Mommer L, Kirkegaard J, Van Ruijven J. Root–Root interactions: Towards a rhizosphere framework. Trends Plant Sci. 2016;21(3):209–217. doi: 10.1016/j.tplants.2016.01.009.
  • Orozco-Mosqueda M, Fadiji AE, Babalola OO, et al. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res. 2022;263:127137. doi: 10.1016/j.micres.2022.127137.
  • Li J, Zhou B, Li T, et al. Isolation of rhizobacteria from the Cenchrus fungigraminus rhizosphere and characterization of their nitrogen-fixing performance and potential role in plant growth promotion. Plant Soil. 2023;489(1–2):405–421. doi: 10.1007/s11104-023-06028-0.
  • Wang S, Chen S, Wang B, et al. Screening of endophytic fungi from Cremastra appendiculata and their potential for plant growth promotion and biological control. Folia Microbiol (Praha). 2023;68(1):121–133. doi: 10.1007/s12223-022-00995-0.
  • Shameem M R, Sonali J MI, Kumar PS, et al. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environ Res. 2023;220:115200. doi: 10.1016/j.envres.2022.115200.
  • He T, Xu Z-J, Wang J-F, et al. Improving cadmium accumulation by Solanum nigrum L. via regulating rhizobacterial community and metabolic function with phosphate-solubilizing bacteria colonization. Chemosphere. 2022;287(Pt 2):132209. doi: 10.1016/j.chemosphere.2021.132209.
  • Nawaz A, Mubeen F, Imran A, et al. Contribution of potassium solubilizing bacteria in improved potassium assimilation and cytosolic K/Na ratio in rice (Oryza sativa L.) under saline-sodic conditions. Front Microbiol. 2023;14:1196024. doi: 10.3389/fmicb.2023.1196024.
  • Gang S, Saraf M, Waite CJ, et al. Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant Soil. 2018;424(1):273–288. doi: 10.1007/s11104-017-3440-5.
  • Bach E, Seger G, Fernandes G, et al. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol. 2016;99:141–149. doi: 10.1016/j.apsoil.2015.11.002.
  • Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants (Basel). 2022;11(22):3065. doi: 10.3390/plants11223065.
  • Zhang W, Zhang Y, Wang X, et al. Siderophores in clinical isolates of Klebsiella pneumoniae promote ciprofloxacin resistance by inhibiting the oxidative stress. Biochem Biophys Res Commun. 2017;491(3):855–861. doi: 10.1016/j.bbrc.2017.04.108.
  • Yang W, Gong T, Wang J, et al. Effects of compound microbial fertilizer on soil characteristics and yield of wheat (Triticum aestivum L.). J Soil Sci Plant Nutr. 2020;20(4):2740–2748. doi: 10.1007/s42729-020-00340-9.
  • Valle Expósito CD, López JÁ, Liu J, et al. Development of a cold-active microbial compound biofertilizer on the improvement for rice (Oryza sativa L.) tolerance at low-temperature. Rhizosphere. 2022;24:100586. doi: 10.1016/j.rhisph.2022.100586.
  • Rafique E, Mumtaz MZ, Ullah I, et al. Potential of mineral-solubilizing bacteria for physiology and growth promotion of Chenopodium quinoa Willd. Front Plant Sci. 2022;13:1004833. doi: 10.3389/fpls.2022.1004833.
  • Rawat P, Shankhdhar D, Shankhdhar S. Synergistic impact of phosphate solubilizing bacteria and phosphorus rates on growth, antioxidative defense system, and yield characteristics of upland rice (Oryza sativa L.). J Plant Growth Regul. 2022;41(6):2449–2461. doi: 10.1007/s00344-021-10458-4.
  • Mengstie GY, Awlachew ZT, Degefa AM. Selected rhizobacteria strains as potential growth promoters and biocontrol agents against chocolate spot disease in faba bean grown in pots. Biotechnol Biotechnological Equipment. 2023;37(1):2297885. doi: 10.1080/13102818.2023.2297885.
  • Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol Biotechnological Equipment. 2017;31(3):446–459. doi: 10.1080/13102818.2017.1286950.
  • Admassie M, Woldehawariat Y, Alemu T, et al. The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants. Agric Water Manage. 2022;272:107831. doi: 10.1016/j.agwat.2022.107831.
  • Felestrino ÉB, Vieira IT, Caneschi WL, et al. Biotechnological potential of plant growth-promoting bacteria from the roots and rhizospheres of endemic plants in ironstone vegetation in southeastern Brazil. World J Microbiol Biotechnol. 2018;34(10):156. doi: 10.1007/s11274-018-2538-0.
  • Qu Z, Li Y-h, Xu W-h, et al. Different genotypes regulate the microbial community structure in the soybean rhizosphere. J Integr Agriculture. 2023;22(2):585–597. doi: 10.1016/j.jia.2022.08.010.
  • Hu L, Robert CAM, Cadot S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9(1):2738. doi: 10.1038/s41467-018-05122-7.
  • Bourak K, Sare AR, Allaoui A, et al. Impact of two phosphorus fertilizer formulations on wheat physiology, rhizosphere, and rhizoplane microbiota. Int J Mol Sci. 2023;24(12):9879. doi: 10.3390/ijms24129879.
  • Yang L, Huang Y, Lima LV, et al. Rethinking the ecosystem functions of Dicranopteris, a widespread genus of ferns. Front Plant Sci. 2020;11:581513. doi: 10.3389/fpls.2020.581513.
  • Zhang H, Xie J-S, Lyu M-K. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area. Chinese J Plant Ecol. 2017;41(8):862–871. doi: 10.17521/cjpe.2016.0363.
  • Li Q-y, Zhu C-L, Yu J-B, et al. Response of soil bacteria of Dicranopteris dichotoma populations to vegetation restoration in red soil region of China. J Soil Sci Plant Nutr. 2023;23(1):456–468. doi: 10.1007/s42729-022-01058-6.
  • Pikovskaya RI. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiology. 1948;17:362–370.
  • Singh TB, Sahai V, Goyal D, et al. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr Microbiol. 2020;77(11):3633–3642. doi: 10.1007/s00284-020-02165-2.
  • Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995;61(2):793–796. doi: 10.1128/aem.61.2.793-796.1995.
  • Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47–56. doi: 10.1016/0003-2697(87)90612-9.
  • Wang Y, Huang W, Ali SW, et al. Isolation, identification, and characterization of an efficient siderophore producing bacterium from heavy metal contaminated soil. Curr Microbiol. 2022;79(8):227. doi: 10.1007/s00284-022-02922-5.
  • James N, Umesh M, Sarojini S, et al. Unravelling the potential plant growth activity of halotolerant Bacillus licheniformis NJ04 isolated from soil and its possible use as a green bioinoculant on Solanum lycopersicum L. Environ Res. 2023;216(Pt 2):114620. doi: 10.1016/j.envres.2022.114620.
  • Wakarera PW, Ojola P, Njeru EM. Characterization and diversity of native Azotobacter spp. isolated from semi-arid agroecosystems of Eastern Kenya. Biol Lett. 2022;18(3):20210612. doi: 10.1098/rsbl.2021.0612.
  • Thakur R, Srivastava S, Yadav S. Multitrait Pseudomonas sp. isolated from the rhizosphere of Bergenia ciliata acts as a growth-promoting bioinoculant for plants. Front Sustain Food Syst. 2023;7:1097587. doi: 10.3389/fsufs.2023.1097587.
  • Wang Z, Zhang H, Liu L, et al. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol. 2022;22(1):296. doi: 10.1186/s12866-022-02715-7.
  • Li L, Chen R, Zuo Z, et al. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB. World J Microbiol Biotechnol. 2020;36(2):27. doi: 10.1007/s11274-019-2744-4.
  • Chen J, Zhao G, Wei Y, et al. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Sci Rep. 2021;11(1):9081. doi: 10.1038/s41598-021-88635-4.
  • Estrada-Bonilla GA, Lopes CM, Durrer A, et al. Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste. Syst Appl Microbiol. 2017;40(5):308–313. doi: 10.1016/j.syapm.2017.05.003.
  • Yu H, Wu X, Zhang G, et al. Identification of the phosphorus-solubilizing bacteria strain JP233 and its effects on soil phosphorus leaching loss and crop growth. Front Microbiol. 2022;13:892533. doi: 10.3389/fmicb.2022.892533.
  • Tchakounté GVT, Berger B, Patz S, et al. Selected rhizosphere bacteria help tomato plants cope with combined phosphorus and salt stresses. Microorganisms. 2020;8(11):1844. doi: 10.3390/microorganisms8111844.
  • Saadouli I, Mosbah A, Ferjani R, et al. The impact of the inoculation of phosphate-solubilizing bacteria Pantoea agglomerans on phosphorus availability and bacterial community dynamics of a semi-arid soil. Microorganisms. 2021;9(8):1661. doi: 10.3390/microorganisms9081661.
  • Bilal S, Hazafa A, Ashraf I, et al. Comparative effect of inoculation of phosphorus-solubilizing bacteria and phosphorus as sustainable fertilizer on yield and quality of mung bean (Vigna radiata L.). Plants (Basel). 2021;10(10):2079. doi: 10.3390/plants10102079.
  • Finkel OM, Salas-González I, Castrillo G, et al. A single bacterial genus maintains root growth in a complex microbiome. Nature. 2020;587(7832):103–108. doi: 10.1038/s41586-020-2778-7.
  • Yankey R, Omoor INA, Karanja JK, et al. Metabolic properties, gene functions, and biosafety analysis reveal the action of three rhizospheric plant growth-promoting bacteria of Jujuncao (Pennisetum giganteum). Environ Sci Pollut Res Int. 2022;29(25):38435–38449. doi: 10.1007/s11356-021-17854-z.
  • Cheng S, Jiang JW, Tan LT, et al. Plant growth-promoting ability of Mycorrhizal fusarium strain KB-3 enhanced by its IAA producing endohyphal bacterium, Klebsiella aerogenes. Front Microbiol. 2022;13:855399. doi: 10.3389/fmicb.2022.855399.
  • Han Z, Ghanizadeh H, Zhang H, et al. Clonostachys rosea promotes root growth in tomato by secreting auxin produced through the tryptamine pathway. J Fungi (Basel). 2022;8(11):1166. doi: 10.3390/jof8111166.
  • Lobo LLB, da Silva M, Carvalho RF, et al. The negative effect of coinoculation of plant growth-promoting bacteria is not related to Indole-3-acetic acid synthesis. J Plant Growth Regul. 2023;42(4):2317–2326. doi: 10.1007/s00344-022-10706-1.
  • Chowdappa S, Jagannath S, Konappa N, et al. Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium. Biomolecules. 2020;10(10):1412. doi: 10.3390/biom10101412.
  • Chandwani S, Dewala S, Chavan SM, et al. Complete genome sequencing of Bacillus subtilis (CWTS 5), a siderophore-producing bacterium triggers antagonistic potential against Ralstonia solanacearum. J Appl Microbiol. 2023;134(4):lxad066. doi: 10.1093/jambio/lxad066.
  • Li Z, Li J, Yu M, et al. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants. PLoS One. 2023;18(6):e0286971. doi: 10.1371/journal.pone.0286971.
  • Grobelak A, Hiller J. Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. Int J Phytoremediation. 2017;19(9):825–833. doi: 10.1080/15226514.2017.1290581.
  • Behera BC, Sethi BK, Mishra RR, et al. Microbial cellulases – diversity & biotechnology with reference to mangrove environment: A review. J Genet Eng Biotechnol. 2017;15(1):197–210. doi: 10.1016/j.jgeb.2016.12.001.
  • Karcz W, Burdach Z. A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. J Exp Bot. 2002;53(371):1089–1098. doi: 10.1093/jexbot/53.371.1089.
  • Morais MC, Mucha Â, Ferreira H, et al. Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. J Sci Food Agric. 2019;99(12):5341–5349. doi: 10.1002/jsfa.9773.
  • Bakaeva M, Chetverikov S, Timergalin M, et al. PGP-Bacterium Pseudomonas protegens improves bread wheat growth and mitigates herbicide and drought stress. Plants (Basel). 2022;11(23):3289. doi: 10.3390/plants11233289.
  • Singh P, Singh RK, Zhou Y, et al. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: A review. J Plant Interact. 2022;17(1):220–238. doi: 10.1080/17429145.2022.2029963.
  • Singh A, Yadav VK, Chundawat RS, et al. Enhancing plant growth promoting rhizobacterial activities through consortium exposure: A review. Front Bioeng Biotechnol. 2023;11:1099999. doi: 10.3389/fbioe.2023.1099999.