248
Views
2
CrossRef citations to date
0
Altmetric
Articles

Pollution-, temperature- and predator-induced responses in phenotypically plastic gastropod shell traits

, , , , &
Pages 34-40 | Received 27 Sep 2016, Published online: 03 Aug 2017

References

  • Appleton, R.D. & Palmer, A.R. (1988) Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proceedings of the National Academy of Sciences USA 85, 4387–4391. doi: 10.1073/pnas.85.12.4387
  • Boulding, E.G. & Dalziel, B. (2004) Water-borne cues from a shell-crushing predator induce a more massive shell in experimental populations of an intertidal snail. Journal of Experimental Marine Biology and Ecology 317, 25–35.
  • Boyce, J.I., Morris, W.A., & Pozza, M.R. (2004) Magnetic mapping and classification of contaminant impact levels in lake sediments. American Geophysical Union Abstracts NS13A-06.
  • Brakefield, P.M. & Larsen, T.B. (1984) The evolutionary significance of dry and wet season forms in some tropical butterflies. Biological Journal of the Linnaean Society 22, 1–12. doi: 10.1111/j.1095-8312.1984.tb00795.x
  • Curran, K.J., Droppo, I.G., Irvine, K.N. & Murphy, T.P. (2000) Suspended solids, trace metals and PAH concentrations and loadings from coal pile runoff to Hamilton Harbour, Ontario. Journal of Great Lakes Research 26, 18–30. doi: 10.1016/S0380-1330(00)70670-8
  • DeWitt, T.J. (1998) Costs and limits of phenotypic plasticity: tests with predator-induced morphology and life history in a freshwater snail. Journal of Evolutionary Biology 11, 465–480. doi: 10.1007/s000360050100
  • DeWitt, T.J. & Scheiner, S.M. (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York.
  • DeWitt, T.J., Sih, A. & Hucko, J.A. (1999) Trait compensation and cospecialization in a freshwater snail: size, shape and antipredator behaviour. Animal Behaviour 58, 397–407. doi: 10.1006/anbe.1999.1158
  • Gould, S.J. (1997) The exaptive excellence of spandrels as a term and prototype. Proceedings of the National Academy of Sciences USA 94, 10750–10755. doi: 10.1073/pnas.94.20.10750
  • Gould, S.J. (2002) The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge, MA.
  • Gould, S.J. & Lewontin, R. (1979) The spandrels of San-Marco and the Panglossian paradigm a critique of the adaptationist program. Proceedings of the Royal Society B: Biological Sciences 205, 581–598. doi: 10.1098/rspb.1979.0086
  • Graus, R.R. (1974) Latitudinal trends in the shell characteristics of marine gastropods. Lethaia 7, 303–314. doi: 10.1111/j.1502-3931.1974.tb00906.x
  • Heath, D.J. (1985) Whorl overlap and the economical construction of the gastropod shell. Biological Journal of the Linnaean Society 24, 165–174. doi: 10.1111/j.1095-8312.1985.tb00167.x
  • Hoverman, J.T., Auld, J.R. & Relyea, R.A. (2005) Putting prey back together again: integrating predator-induced behaviour, morphology, and life history. Oecologia 144, 481–491. doi: 10.1007/s00442-005-0082-8
  • Jordaens, K., De Wolf, H., Vandecasteele, B., Blust, R., & Backeljau, T. (2006) Associations between shell strength, shell morphology and heavy metals in the land snail Cepaea nemoralis (Gastropoda, Helicidea). Science of the Total Environment 363, 285–293. doi: 10.1016/j.scitotenv.2005.12.002
  • Kingsolver, J.G. (1995) Viability selection on seasonally polyphenic traits: wing melanin pattern in western white butterflies. Evolution 49, 932–941. doi: 10.1111/j.1558-5646.1995.tb02328.x
  • Kingsolver, J.G. & Wiernasz, D.C. (1991) Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies. The American Naturalist 137, 816–830. doi: 10.1086/285195
  • Márquez, F., González-José, R. & Bigatti, G. (2011) Combined methods to detect pollution effects on shell shape and structure in neogastropods. Ecological Indicators 11, 248–254. doi: 10.1016/j.ecolind.2010.05.001
  • Merilä, J. & Hendry, A.P. (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications 7, 1–14. doi: 10.1111/eva.12137
  • Microsoft Corporation. (2007) Excel (for Windows Office 7). Seattle, Washington.
  • Minitab Company. (2009) Minitab 14. State College, PA.
  • Noshita, K., Asami, T. & Ubukata, T. (2012) Functional constraints on coiling geometry and aperture inclination in gastropods. Paleobiology 38, 322–334. doi: 10.1666/10060.1
  • Palmer, A.R. (1979) Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution 33, 697–713. doi: 10.1111/j.1558-5646.1979.tb04722.x
  • Palmer, A.R. (1992) Calcification in marine molluscs: how costly is it? Proceedings of the National Academy of Sciences USA 89, 1379–1382. doi: 10.1073/pnas.89.4.1379
  • Piersma, T. and Drent, J. (2003) Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution 18, 228–233. doi: 10.1016/S0169-5347(03)00036-3
  • Pollard, E. (1975) Differences in shell thickness in adult Helix pomatia L. from a number of localities in Southern England. Oecologia 21, 85–92. doi: 10.1007/BF00345895
  • Rasband, W.S. (2009) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. Available online at http://rsb.info.nih.gov/ij/.
  • Raup, D.M. & Graus, R.R. (1972) General equations for volume and surface area of a logarithmically coiled shell. Journal of the International Association for Mathematical Geology 4, 307–316. doi: 10.1007/BF02114092
  • Rex, M.A. & Boss, K.J. (1976) Open coiling in recent gastropods. Malacologia 15, 289–297.
  • Rollo, C.D., Czyzewska, E. & Borden, J.H. (1994) Fatty acid necromones for cockroaches. Naturwissenschaften 81, 409–410. doi: 10.1007/BF01132695
  • Silvestre, F., Gillardin, V. & Dorts, J. (2012) Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming. Integrative and Comparative Biology 52, 681–694. doi: 10.1093/icb/ics087
  • Sokal, R.R. & Rohlf, F.J. (1999) Biometry. W. H. Freeman and Company, New York.
  • Stone, J.R. (1995) CerioShell: a computer program designed to simulate variation in shell form. Paleobiology 21, 509–519. doi: 10.1017/S0094837300013518
  • Stone, J.R. (1997) Mathematical determination of coiled shell volumes and surface areas. Lethaia 30, 213–219. doi: 10.1111/j.1502-3931.1997.tb00463.x
  • Stone, J.R. (2004) Nonoptimal shell forms as overlapping points in theoretical and functional morphospaces. American Malacological Bulletin 18, 123–128.
  • Trussell, G.C. (1996) Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution 50, 448–454. doi: 10.1111/j.1558-5646.1996.tb04507.x
  • Trussell, G.C. (2000) Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 54, 151–166. doi: 10.1111/j.0014-3820.2000.tb00016.x
  • Turner, A.M., Bernot, R.J. & Boes, C.M. (2000) Chemical cues modify species interactions: the ecological consequences of predator avoidance by freshwater snails. Oikos 88, 148–158. doi: 10.1034/j.1600-0706.2000.880117.x
  • Vermeij, G.J. (1974) Marine faunal dominance and molluscan shell form. Evolution 28, 656–664. doi: 10.1111/j.1558-5646.1974.tb00797.x
  • Vermeij, G.J. (1976) Interoceanic differences in vulnerability of shelled prey to crab predation. Nature 260, 135–136. doi: 10.1038/260135a0
  • Vermeij, G.J. (1978) Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge, MA.
  • West-Eberhard, M.J. (2005) Phenotypic accommodation: adaptive innovation due to developmental plasticity. Journal of Experimental Biology 304B, 610–618.
  • Windig, J.J., Brakefield, P.M., Reitsma, N. & Wilson, J.G.M. (1994) Seasonal polyphenism in the wild: survey of wing patterns in five species of Bicyclus butterflies in Malawi. Ecological Entomology 19, 285–298. doi: 10.1111/j.1365-2311.1994.tb00420.x
  • Wolfram Research, Incorporated. (2007) Mathematica v. 6.0.1.0. Wolfram Research, Inc, Champaign, IL.
  • Yao, M., Rosenfeld, J., Attridge, S., Sidhu, S., Aksenov, V. & Rollo, C.D. (2009) The ancient chemistry of avoiding risks of predation and disease. Evolutionary Biology 36, 267–281. doi: 10.1007/s11692-009-9069-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.