182
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of temperature on the growth and microstructure formation of cuttlebone from cuttlefish Sepia pharaonis

, , &
Pages 112-119 | Received 01 Jun 2019, Published online: 11 Mar 2020

References

  • Bandel, K. (1979) A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. The Veliger 21, 313–354.
  • Bayne, B.L. (1983) Physiological ecology of marine molluscan larvae. In: Wilbur, K.M. (Ed.), The Mollusca. Academic Press, San Diego, pp. 299–343.
  • Bettencourt, V. & Guerra, A. (1999) Carbon- and oxygen-isotope composition of the cuttlebone of Sepia officinalis: a tool for predicting ecological information? Marine Biology 133, 651–657. doi: 10.1007/s002270050505
  • Bettencourt, V. & Guerra, A. (2001) Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Marine Biology 139, 327–334. doi: 10.1007/s002270100582
  • Birchall, J.D. & Thomas, N.L. (1983) On the architecture and function of cuttlefish bone. Journal of Materials Science 18, 2081–2086. doi: 10.1007/BF00555001
  • Boletzky, S.V. (1974) Effets de la sous-nutrition prolongée sur le développement de la coquille de Sepia officinalis L. (Mollusca, Cephalopoda). Bulletin de la Société zoologique de France 99, 667–673.
  • Boletzky, S.V. (1983) Sepia officinalis. In: Boyle, P.R. (Ed.), Cephalopod life cycles. Academic Press, London, pp. 31–52.
  • Cadman, J., Zhou, S., Chen, Y. & Li, Q. (2012) Cuttlebone: characterisation, application and development of biomimetic materials. Journal of Bionic Engineering 9, 367–376. doi: 10.1016/S1672-6529(11)60132-7
  • Choe, S. (1963) Daily age markings on the shells of cuttlefishes. Nature 197, 306–307. doi: 10.1038/197306b0
  • Chung, M.T. & Wang, C.H. (2013) Age validation of the growth lamellae in the cuttlebone from cultured Sepia pharaonis at different stages. Journal of Experimental Marine Biology and Ecology 447, 132–137. doi: 10.1016/j.jembe.2013.02.020
  • Denton, E.J. & Gilpin-Brown, J.B. (1959) Buoyancy of the cuttlefish. Nature 184, 1330–1331. doi: 10.1038/1841330a0
  • Denton, E.J. & Gilpin-Brown, J.B. (1961) The distribution of gas and liquid within the cuttlebone. Journal of the Marine Biological Association of the UK 41, 365–381. doi: 10.1017/S0025315400023973
  • FAO (2005) Cephalopods of the world: an annotated and illustrated catalogue of cephalopod species known to date. FAO Species Catalogue for Fishery Purposes, Rome, Italy 1, 1–262.
  • Gutowska, M.A., Melzner, F., Pörtner, H.O. & Meier, S. (2010) Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Marine Biology 157, 1653–1663. doi: 10.1007/s00227-010-1438-0
  • Gutowska, M.A., Pörtner, H.O. & Melzner, F. (2008) Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Marine Ecology Progress Series 373, 303–309. doi: 10.3354/meps07782
  • Hewitt, R.A. & Stait, B. (1988) Seasonal variation in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids. Lethaia 21, 383–394. doi: 10.1111/j.1502-3931.1988.tb01767.x
  • Jacobs, D.K. (1992) The support of hydrostatic load in cephalopod shells: a history of adaptive and ontogenetic explanations in morphology and evolution. Evolutionary Biology 26, 287–349. doi: 10.1007/978-1-4615-3336-8_8
  • Jiang, M.W., Peng, R.B. & Jiang, X.M. (2018) Growth performance and nutritional composition of Sepia pharaonis under artificial culturing conditions. Aquaculture Research 49, 2788–2798. doi: 10.1111/are.13741
  • Koueta, N. & Boucaud, E. (2003) Combined effects of photoperiod and feeding frequency on survival and growth of juvenile cuttlefish Sepia officinalis L. in experimental rearing. Journal of Experimental Marine Biology and Ecology 296, 215–226. doi: 10.1016/S0022-0981(03)00322-8
  • Le Goff, R., Gauvrit, E., Pinczon du Sel, G. & Daguzan, J. (1998) Age group determination by analysis of the cuttlebone of the cuttlefish Sepia officinalis L. in reproduction in the Bay of Biscay. Journal of Molluscan Studies 64, 183–193. doi: 10.1093/mollus/64.2.183
  • Lei, S., Zhang, X., Liu, S. & Chen, S. (2012) Effects of temperature fluctuations on cuttlebone formation of cuttlefish Sepia esculenta. Chinese Journal of Oceanology and Limnology 30, 547–553. doi: 10.1007/s00343-012-1221-9
  • Martínez, P., Bettencourt, V., Guerra, Á & Moltschaniwskyj, N.A. (2000) How temperature influences muscle and cuttlebone growth in juvenile cuttlefish (Sepia elliptica) (Mollusca: Cephalopoda) under conditions of food stress. Canadian Journal of Zoology 78, 1855–1861. doi: 10.1139/z00-115
  • Natsukari, Y. (1991) Growth and seasonal change of cuttlebone characters of Sepia esculenta. In: Boucaud-Camou, E. (Ed.), Proceedings of the First international symposium on the cuttlefish Sepia, University of Caen, Caen, June 1991. Centre de publications de l’Université de Caen, Caen, France. pp. 49–67.
  • Neige, P. (2006) Morphometrics of hard structures in cuttlefish. Vie et Milieu 56, 121–128.
  • Norman, M. & Reid, A. (2000) Guide to squid, cuttlefish and octopuses of Australasia. CSIRO, Melbourne.
  • Peng, R.B., Le, K.X. & Jiang, X.M. (2017) Detoxification pathways in response to environmental ammonia exposure of the cuttlefish, Sepia pharaonis: glutamine and urea formation. Journal of the World Aquaculture Society 48, 342–352. doi: 10.1111/jwas.12341
  • Ré, P. & Narciso, L. (1994) Growth and cuttlebone microstructure of juvenile cuttlefish, Sepia officinalis, L. under controlled conditions. Journal of Experimental Marine Biology and Ecology 177, 73–78. doi: 10.1016/0022-0981(94)90144-9
  • Richard, A. (1969) The part played by temperature in the rhythm of formation of markings on the shell of cuttlefish (Sepia officinalis L) (Cephalopoda, Mollusca). Experientia 25, 1051–1052. doi: 10.1007/BF01901423
  • Sang, C. (1963) Daily age markings on the shell of cuttlefishes. Nature 197, 306–307.
  • Santos, V.B.D., Yoshihara, E. & Neto, R.V.R. (2008) Exponential growth model of Nile tilapia (Oreochromis niloticus) strains considering heteroscedastic variance. Aquaculture 274, 96–100. doi: 10.1016/j.aquaculture.2007.11.005
  • Sherrard, K.M. (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biology Bulletin 198, 404–414. doi: 10.2307/1542696
  • Sigwart, J.D., Lyons, G. & Hu, M.Y.A. (2015) Elevated pCO2 drives lower growth and yet increased calcification in the early life history of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda). ICES Journal of Marine Science 73, 970–980. doi: 10.1093/icesjms/fsv188
  • Ward, P. & Boletzky, S.V. (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 64, 955–966. doi: 10.1017/S0025315400047366
  • Zhou, S.N., Lyu, T.T. & Jiang, X.M. (2018) Effects of light intensity and photoperiod on the embryonic development of Sepia pharaonis. Chinese Journal of Applied Ecology 29, 2059–2067. (in Chinese with English abstract).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.