464
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Damage analysis and energy absorption capacity of hollow square steel tubes subjected to conical hammer impact

ORCID Icon &
Pages 34-54 | Received 01 Jun 2023, Accepted 25 Jul 2023, Published online: 02 Aug 2023

References

  • Alam, M. I., and S. Fawzia. 2015. “Numerical Studies on CFRP Strengthened Steel Columns Under Transverse Impact.” Composite Structures 120:428–441. https://doi.org/10.1016/j.compstruct.2014.10.022.
  • Alam, M. I., S. Fawzia, X.-L. Zhao, and A. M. Remennikov. 2017. “Experimental Study on FRP-Strengthened Steel Tubular Members Under Lateral Impact.” Journal of Composites for Construction 21 (5). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000801.
  • Al-Thairy, H., and Y. C. Wang. 2011. “A Numerical Study of the Behaviour and Failure Modes of Axially Compressed Steel Columns Subjected to Transverse Impact.” International Journal of Impact Engineering 38 (8–9): 732–744. https://doi.org/10.1016/j.ijimpeng.2011.03.005.
  • Alves, M., and N. Jones. 2002. “Impact Failure of Beams Using Damage Mechanics: Part I - Analytical Model.” International Journal of Impact Engineering 27 (8): 837–861. https://doi.org/10.1016/S0734-743X(02)00017-9.
  • Bambach, M. R., H. Jama, X. L. Zhao, and R. H. Grzebieta. 2008. “Hollow and Concrete Filled Steel Hollow Sections Under Transverse Impact Loads.” Engineering Structures 30 (10): 2859–2870. https://doi.org/10.1016/j.engstruct.2008.04.003.
  • Cowper, G. R., and P. S. Symonds. 1957. “Strain-Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams.“ 28.
  • Cui, G., X. Zhai, and L. Meng. 2022. “Behavior of Axially Loaded High-Strength Steel Circular Hollow Section Tubes Under Low Velocity Lateral Impact.” Thin-Walled Struct 185 (November): 110595. 2023. https://doi.org/10.1016/j.tws.2023.110595.
  • Dassault Systèmes. 2021. “Abaqus Analysis User ’ S Guide.”
  • Deng, Y., and C. Y. Tuan. 2013. “Design of Concrete-Filled Circular Steel Tubes Under Lateral Impact.” ACI Structural Journal 110 (4): 691–701.
  • Guan, Z. W., A. S. Al-Husainy, Q. Y. Wang, S. W. Jones, C. Su, and L. Q. Liu. 2020. “Numerical Modeling of Recycled and Normal Aggregate CFRP-Strengthened Concrete-Filled Steel Columns Subjected to Lateral Impact.” Journal of Composites for Construction 24 (5): 1–12. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001051.
  • Güden, M., and H. Kavi. 2006. “Quasi-Static Axial Compression Behavior of Constraint Hexagonal and Square-Packed Empty and Aluminum Foam-Filled Aluminum Multi-Tubes.” Thin-Walled Struct 44 (7): 739–750. https://doi.org/10.1016/j.tws.2006.07.003.
  • Gupta, P. K., M. A. Iqbal, G. Tiwari, and N. K. Gupta. 2013. “Effect of Configuration and Target Span on the Ballistic Resistance.” Key Engineering Materials 535–536:52–55. https://doi.org/10.4028/www.scientific.net/KEM.535-536.52.
  • Han, L. H., C. C. Hou, X. L. Zhao, and K. J. R. Rasmussen. 2014. “Behaviour of High-Strength Concrete Filled Steel Tubes Under Transverse Impact Loading.” Journal of Constructional Steel Research 92:25–39. https://doi.org/10.1016/j.jcsr.2013.09.003.
  • Han, L. H., W. Li, and R. Bjorhovde. 2014. “Developments and Advanced Applications of Concrete-Filled Steel Tubular (CFST) Structures: Members.” Journal of Constructional Steel Research 100:211–228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  • ibeehive Steel Structure. 2022. “What is Hollow Steel Structure Section ?.” [Online]. Accessed April 7, 2023. https://www.ibeehivesteelstructures.com/what-is-hollow-steel-structure-section/.
  • Iqbal, M. A., P. K. Gupta, V. S. Deore, S. K. Tak, G. Tiwari, and N. K. Gupta. 2012. “Effect of Target Span and Configuration on the Ballistic Limit.” International Journal of Impact Engineering 42:11–24. https://doi.org/10.1016/j.ijimpeng.2011.10.004.
  • Jilin, Y., and J. Norman. 1991. “Further Experimental Investigations on the Failure of Clamped Beams Under Impact Loads.” International Journal of Solids and Structures 27 (9): 1113–1137. https://doi.org/10.1016/0020-7683(91)90114-U.
  • Jones, N. 2011. Structural Impact. 978-1-01096-3.
  • Jones, N., and J. K. Paik. 2013. “Impact Perforation of Steel Plates.” Ships Offshore Struct 8 (5): 579–596. https://doi.org/10.1080/17445302.2012.704163.
  • Kadhim, M. M. A., Z. Wu, and L. S. Cunningham. 2017. “Experimental Study of CFRP Strengthened Steel Columns Subject to Lateral Impact Loads.” Composite Structures 185 (November): 94–104. 2018. https://doi.org/10.1016/j.compstruct.2017.10.089.
  • Kasilingam, S., M. A. Iqbal, and R. Senthil. 2019. “Influence of Impactor Nature, Mass, Size and Shape on Ballistic Resistance of Mild Steel and Armox 500 T Steel.” International Journal of Protective Structures 10 (2): 174–197. https://doi.org/10.1177/2041419618807493.
  • Kobielak, S., Z. Zamiar, and R. Tatko. 2015. “Building Structure Failures Caused by Accidental Loads.” Journal of Science of the Gen Tadeusz Kościuszko Military Academy of Land Forces 177 (3): 21–31. https://doi.org/10.5604/17318157.1187445.
  • Liu, J., and N. Jones. 1987. “Experimental Investigation of Clamped Beams Struck Transversely by a Mass.” International Journal of Impact Engineering 6 (4): 303–335. https://doi.org/10.1016/0734-743X(87)90097-2.
  • Lu, G., and X. Wang. 2002. “On the Quasi-Static Piercing of Square Metal Tubes.” International Journal of Mechanical Sciences 44 (6): 1101–1115. https://doi.org/10.1016/S0020-7403(02)00016-4.
  • Maduliat, S., T. D. Ngo, P. Tran, and R. Lumantarna. 2015. “Performance of Hollow Steel Tube Bollards Under Quasi-Static and Lateral Impact Load.” Thin-Walled Struct 88:41–47. https://doi.org/10.1016/j.tws.2014.11.024.
  • Menkes, S. B., and H. J. Opat. 1973. “Broken Beams.” Experimental Mechanics 13 (11): 480–486. https://doi.org/10.1007/BF02322734.
  • Mohammed, N., W. H. Wan Badaruzzaman, A. W. Al Zand, S. Kazemzadeh Azad, B. Uy, M. R. Azmi, F. Alatshan, et al. 2022. “Thin-Walled Struct a Systematic Review on CFST Members Under Impulsive Loading.” Thin-Walled Structures 179 (May): 109503. https://doi.org/10.1016/j.tws.2022.109503.
  • Nasery, M. M., E. Ağacakoca, and Z. Yaman. 2020. “Experimental and Numerical Analysis of Impactor Geometric Shape Effects on Steel Beams Under Impact Loading.” Structures 27 (July): 1118–1138. https://doi.org/10.1016/j.istruc.2020.07.012.
  • Niyirora, R., F. Niyonyungu, T. Hakuzweyezu, E. Masengesho, R. Nyirandayisabye, and J. Munyaneza. 2023. “Behavior of Concrete-Encased Concrete-Filled Steel Tube Columns Under Diverse Loading Conditions: A Review of Current Trends and Future Prospects.” Cogent Eng 10 (1). https://doi.org/10.1080/23311916.2022.2156056.
  • Reddy, T. Y., and R. J. Wall. 1988. “Axial Compression of Foam-Filled Thin-Walled Circular Tubes.” International Journal of Impact Engineering 7 (2): 151–166. https://doi.org/10.1016/0734-743X(88)90023-1.
  • Reid, S. R. 1985. Metal Tubes as Impact Energy Absorbers. William Johnson Commem Volume; Pergamon Press. https://doi.org/10.1016/B978-0-08-031679-6.50022-9.
  • Shen, W. Q., and K. S. Chen. 1998. “An Investigation on the Impact Performance of Pipelines.” International Journal of Crashworthiness 3 (2): 191–210. https://doi.org/10.1533/cras.1998.0070.
  • Simms, L. G. 1945. “Actual and Estimated Impact Resistance of Some Reinforced- Concrete Units Failing in Bending.” Journal of the Institution of Civil Engineers 23 (4): 163–179. https://doi.org/10.1680/ijoti.1945.14106.
  • Wang, L., Y. Liu, L. Yang, N. Xu, and S. Zhao. 2021. “Energy Absorption Mechanism and Its Influencing Factors for Circular Concrete-Filled Steel Tubular Members Subjected to Lateral Impact.” Materials (Basel) 14 (16): 4652. https://doi.org/10.3390/ma14164652.
  • Wang, Y., X. Qian, J. Y. R. Liew, and M. H. Zhang. 2014. “Experimental Behavior of Cement Filled Pipe-In-Pipe Composite Structures Under Transverse Impact.” International Journal of Impact Engineering 72:1–16. https://doi.org/10.1016/j.ijimpeng.2014.05.004.
  • Wardenier, J. 2010.“Hollow Sections in Structural Applications.‘ Cidect, No January. 199. 2000.
  • Wen, H. M., T. Y. Reddy, and S. R. Reid. 1995. “Deformation and Failure of Clamped Beams Under Low Speed Impact Loading.” International Journal of Impact Engineering 16 (3): 435–454. https://doi.org/10.1016/0734-743X(94)00055-2.
  • Wen, H. M., and W. H. Sun. 2010. “Transition of Plugging Failure Modes for Ductile Metal Plates Under Impact by Flat-Nosed Projectiles #.” Mechanics Based Design of Structures and Machines 38 (1): 86–104. https://doi.org/10.1080/15397730903415892.
  • Yousuf, M., B. Uy, Z. Tao, A. Remennikov, and R. Liew. 2012. “Behaviour and Resistance of Hollow and Concrete-Filled Mild Steel Columns Due to Transverse Impact Loading.” Australian Journal of Structural Engineering 13 (1): 65–80. https://doi.org/10.7158/S12-002.2012.13.1.
  • Zeinoddini, M., J. E. Harding, and G. A. R. Parke. 1998. “Effect of Impact Damage on the Capacity of Tubular Steel Members of Offshore Structures.” Marine Structures 11 (4–5): 141–157. https://doi.org/10.1016/S0951-8339(98)00009-4.
  • Zeinoddini, M., J. E. Harding, and G. A. R. Parke. 1999. “Dynamic Behaviour of Axially Pre-Loaded Tubular Steel Members of Offshore Structures Subjected to Impact Damage.” Ocean Engineering 26 (10): 963–978. https://doi.org/10.1016/S0029-8018(98)00036-5.
  • Zeinoddini, M., J. E. Harding, and G. A. R. Parke. 2000. “Contribution of Ring Resistance in the Behaviour of Steel Tubes Subjected to a Lateral Impact.” International Journal of Mechanical Sciences 42 (12): 2303–2320. https://doi.org/10.1016/S0020-7403(99)00099-5.
  • Zeinoddini, M., G. A. R. Parke, and J. E. Harding. 2002. “Axially Pre-Loaded Steel Tubes Subjected to Lateral Impacts: An Experimental Study.” International Journal of Impact Engineering 27 (6): 669–690. https://doi.org/10.1016/S0734-743X(01)00157-9.
  • Zhang, R., X. Dong Zhi, and F. Fan. 2017. “Plastic Behavior of Circular Steel Tubes Subjected to Low-Velocity Transverse Impact.” International Journal of Impact Engineering 114 (November): 1–19. 2018. https://doi.org/10.1016/j.ijimpeng.2017.12.003.
  • Zhang, Y. F., and Z. Q. Zhang. 2016. “Study on Equivalent Confinement Coefficient of Composite CFST Column Based on Unified Theory.” Mechanics of Advanced Materials and Structures 23 (1): 22–27. https://doi.org/10.1080/15376494.2014.922650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.