5,167
Views
19
CrossRef citations to date
0
Altmetric
Articles

A nonparametric data mining approach for risk prediction in car insurance: a case study from the Montenegrin market

, &
Pages 545-558 | Received 05 Jul 2013, Accepted 05 Feb 2016, Published online: 13 May 2016

References

  • Bortoluzzo, A. B., Claro, D. P., Caetano, M. A. L., & Artes, R. (2011). Estimating total claim size in the auto insurance industry: A comparison between tweedie and zero-adjusted inverse gaussian distribution. BAR-Brazilian Administration Review, 8, 37–47.
  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(27), 1–27. Retrieved from http://www.csie.ntu.edu.tw/cjlin/libsvm
  • Chapados, N., Bengio, Y., Vincent, P., Ghosn, J., Dugas, C., Takeuchi, I., & Meng, L. (2002). Estimating car insurance premia: A case study in high-dimensional data inference, advances in neural information processing systems (Vol. 14). Cambridge: MIT Press.
  • Christmann, A. (2004). An approach to model complex high–dimensional insurance data. Allgemeines Statistisches Archiv, 88, 375–396.10.1007/s101820400178
  • Christmann, A. (2005). On a strategy to develop robust and simple tariffs from motor vehicle insurance data. Acta Mathematicae Applicatae Sinica, English Series, 21, 193–208.10.1007/s10255-005-0229-8
  • David, M. (2015, April). Automobile insurance pricing with generalized linear models. Proceedings in GV-Global Virtual Conference (No. 1).
  • Fan, R. E., Chen, P. H., & Lin, C. J. (2005). Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research, 6, 1889–1918.
  • Gepp, A., Wilson, J. H., Kumar, K., & Bhattacharya, S. (2012). A comparative analysis of decision trees vis-à-vis other computational data mining techniques in automotive insurance fraud detection. Journal of data science, 10, 537–561.
  • Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Systems with Applications, 39, 3659–3667.10.1016/j.eswa.2011.09.058
  • Heller, G., Stasinopoulos, M., & Rigby, B. (2006, July). The zero-adjusted inverse Gaussian distribution as a model for insurance claims. Proceedings of the 21th International Workshop on Statistical Modelling (226–233).
  • Kašćelan, L., Kašćelan, V., & Jovanović, M. (2015). Hybrid support vector machine rule extraction method for discovering the preferences of stock market investors: Evidence from Montenegro. Intelligent Automation & Soft Computing, 21(4), 1–20.
  • Keerthi, S. S., Duan, K., Shevade, S. K., & Poo, A. N. A. (2005). Fast dual algorithm for Kernel logistic regression. Machine Learning, 61, 151–165.10.1007/s10994-005-0768-5
  • Liu, Y., Wang, B. J., & Lv, S. G. (2014). Using multi-class AdaBoost tree for prediction frequency of auto insurance. Journal of Applied Finance and Banking, 4, 45.
  • Marin-Galiano, M., & Christmann, A. (2004). Insurance: An R-program to model insurance data ( No. 2004, 49). Technical Report/Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen.
  • Mayer, U. (2002). Third party motor insurance in Europe. Bamberg: University of Bamberg.
  • Ohlsson, E., & Johansson, B. (2010). Non-life insurance pricing with generalized linear models. Berlin: Springer.10.1007/978-3-642-10791-7
  • Paglia, A., & Phelippe-Guinvarc’h, M. V. (2011). Tarification des risques en assurance non-vie, une approche par modele d’apprentissage statistique [Pricing of risks in non-life insurance, an approach by statistic learning models]. Bulletin français d’Actuariat, 11, 49–81.
  • Parnitzke, T. (2008). A discussion of risk assessment methods for the German automobile insurance industry. Working papers on risk management and insurance, 55, University of St. Gallen, Institute of Insurance Economics.
  • Pichler, A. (2014). Insurance pricing under ambiguity. European Actuarial Journal, 4, 335–364.10.1007/s13385-014-0099-7
  • Renshaw, A. E. (1994). Modeling the claims process in the presence of covariates. ASTIN Bulletin, 24, 265–285.10.2143/AST.24.2.2005070
  • Ruping, S. (2003). myKLR. Retrieved from http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYKLR
  • Samson, D., & Thomas, H. (1987). Linear models as aids in insurance decision making: The estimation of automobile insurance claims. Journal of Business Research, 15, 247–256.10.1016/0148-2963(87)90027-0
  • Smith, K. A., Willis, R. J., & Brooks, M. (2000). An analysis of customer retention and insurance claim patterns using data mining: A case study. Journal of the Operational Research Society, 51, 532–541.10.1057/palgrave.jors.2600941
  • Tian, Y., Shi, Y., & Liu, X. (2012). Recent advances on support vector machines research. Technological and Economic Development of Economy, 18, 5–33.10.3846/20294913.2012.661205
  • Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.10.1007/978-1-4757-2440-0
  • Williams, G. J., & Huang, Z. (1997). Mining the knowledge mine: The hot spots methodology for mining large real world databases. Lecture Notes in Artificial Intelligence, 1342, 340–348.
  • Yang, Y., Qian, W., & Zou, H. (2015). A boosted tweedie compound poisson model for insurance premium. Retrieved from http://arxiv.org/abs/1508.06378
  • Yeo, A. C., Smith, K. A., Willis, R. J., & Brooks, M. (2001). Clustering technique for risk classification and prediction of claim costs in the automobile insurance industry. International Journal of Intelligent Systems in Accounting, Finance & Management, 10, 39–50.10.1002/(ISSN)1099-1174