3,021
Views
27
CrossRef citations to date
0
Altmetric
Articles

Determining the utility in management by using multi-criteria decision support tools: a review

, , , , &
Pages 1666-1716 | Received 13 Jun 2016, Accepted 22 Jun 2017, Published online: 24 Nov 2018

References

  • Adhikary, D. D., Bose, G. K., Bose, D., & Mitra, S. (2014). Multi criteria FMECA for coal-fired thermal power plants using COPRAS-G. International Journal of Quality & Reliability Management, 31(5), 601–614.
  • Akadiri, P. O., Olomolaiye, P. O., & Chinyio, E. A. (2013). Multi-criteria evaluation model for the selection of sustainable materials for building projects. Automation in Construction, 30, 113–125.
  • Alimardani, M., Zolfani, S. H., Aghdaie, M. H., & Tamosaitiene, J. (2013). A novel hybrid SWARA and VIKOR methodology for supplier selection in an agile environment. Technological and Economic Development of Economy, 19(3), 533–548.
  • Antucheviciene, J., Zakarevicius, A., & Zavadskas, E. K. (2010). Multiple criteria construction management decisions considering relations between criteria. Technological and Economic Development of Economy, 16(1), 109–125.
  • Antucheviciene, J., Zavadskas, E. K., & Zakarevicius, A. (2012). Ranking redevelopment decisions of derelict buildings and analysis of ranking results. Economic Computation and Economic Cybernetics Studies and Research, 46(2), 37–62.
  • Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  • Bagocius, V., Zavadskas, E. K., & Turskis, Z. (2014b). Multi-person selection of the best wind turbine based on the multi-criteria integrated additive-multiplicative utility function. Journal of Civil Engineering and Management, 20(4), 590–599.
  • Bakshi, T., & Sarkar, B. (2011). MCA based performance evaluation of project selection. International Journal of Software Engineering & Applications, 2(2), 14–22.
  • Balezentiene, L., & Kusta, A. (2012). Reducing greenhouse gas emissions in grassland ecosystems of the central Lithuania: multi-criteria evaluation on a basis of the ARAS method. The Scientific World Journal, e511100, 1–11.
  • Balezentiene, L., Streimikiene, D., & Balezentis, T. (2013). Fuzzy decision support methodology for sustainable energy crop selection. Renewable and Sustainable Energy Reviews, 17, 83–93.
  • Balezentis, A., & Balezentis, T. (2011). Framework of strategic management model for strategy Europe 2020: Diachronic analysis and proposed guidelines. Inžinerinė ekonomika - Engineering Economics, 22(3), 271–282.
  • Balezentis, A., & Balezentis, T. (2011a). Assessing the efficiency of Lithuanian transport sector by applying the methods of MULTIMOORA and data envelopment analysis. Transport, 26(3), 263–270.
  • Balezentis, A., Balezentis, T., & Misiunas, A. (2012). An integrated assessment of Lithuanian economic sectors based on financial ratios and fuzzy MCDM methods. Technological and Economic Development of Economy, 18(1), 34–53.
  • Balezentis, A., Valkauskas, R., & Balezentis, T. (2010). Evaluating situation of Lithuania in the European Union: structural indicators and multimoora method. Technological and Economic Development of Economy, 16(4), 578–602.
  • Baležentis, T., & Baležentis, A. (2011b). A multi-criteria assessment of relative farming efficiency in the European Union Member States. Žemės ūkio mokslai, 18(3), 125–135.
  • Balezentis, T., Balezentis, A., & Brauers, W. K. (2011). Multi-objective optimization of well-being in the European Union member states. Ekonomska Istrazivanja–Economic Research, 24(4), 1–15.
  • Balezentis, T., & Zeng, S. (2013). Group multi-criteria decision making based upon interval-valued fuzzy numbers: An extension of the MULTIMOORA method. Expert Systems with Applications, 40(2), 543–550.
  • Banaitiene, N., Banaitis, A., Kaklauskas, A., & Zavadskas, E. K. (2008). Evaluating the life cycle of a building: A multivariant and multiple criteria approach. Omega, 36(3), 429–441.
  • Barysiene, J. (2012). A multi-criteria evaluation of container terminal technologies applying the COPRAS-G method. Transport, 27(4), 364–372.
  • Belton, V., Stewart, T. (2002). Multiple criteria decision analysis: An integrated approach. New York: Springer.
  • Brauers, W. K. M., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445–469.
  • Brauers, W.K.M. (2004). Optimization methods for a stakeholder society, a revolution in economic thinking by multi-objective optimization. Boston: Kluwer Academic Publishers.
  • Brauers, W. K. M., & Ginevicius, R. (2010). The economy of the Belgian regions tested with MULTIMOORA. Journal of Business Economics and Management, 11(2), 173–209.
  • Brauers, W.K.M. (2013). Multi-objective seaport planning by MOORA decision making. Annals of Operations Research, 206(1), 39–58.
  • Brauers, W.K.M. (2012). Project management for a country with multiple objectives. Czech Economic Review, 6(1), 80–101.
  • Brauers, W. K. M., Ginevicius, R., Podvezko, V. (2010). Regional development in Lithuania considering multiple objectives by the MOORA method. Technological and Economic Development of Economy, 16(4), 613–640.
  • Brauers, W. K. M., Zavadskas, E. K. (2010). Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, 16(1), 5–24.
  • Brauers, W. K. M., Zavadskas, E. K. (2012). Robustness of MULTIMOORA: A method for multi-objective optimization. Informatica, 23(1), 1–25.
  • Chakraborty, S. (2011). Applications of the MOORA method for decision making in manufacturing environment. The International Journal of Advanced Manufacturing Technology, 54(9–12), 1155–1166.
  • Charnes, A. (1994). Data envelopment analysis: Theory, methodology and applications. New York: Springer.
  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.
  • Chatterjee, N., & Bose, G. (2013). A COPRAS-F base multi-criteria group decision making approach for site selection of wind farm. Decision Science Letters, 2(1), 1–10.
  • Chatterjee, P., Athawale, V. M., & Chakraborty, S. (2011). Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 32(2), 851–860.
  • Chatterjee, P., & Chakraborty, S. (2012). Material selection using preferential ranking methods. Materials & Design, 35, 384–393.
  • Chauhan, A., & Vaish, R. (2012). Magnetic material selection using multiple attribute decision making approach. Materials & Design, 36, 1–5.
  • Chen, S.-M., & Tan, J.-M. (1994). Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 67(2), 163–172.
  • Chen, T.-Y., Wang, H.-P., & Lu, Y.-Y. (2011). A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: A comparative perspective. Expert Systems with Applications, 38(6), 7647–7658.
  • Cheng, E., & Li, H. (2005). Analytic network process applied to project selection. Journal of Construction Engineering and Management, 131(4), 459–466.
  • Chiclana, F., Herrera, F., & Herrera-Viedma, E. (1998). Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets and Systems, 97(1), 33–48.
  • Chiclana, F., Herrera, F., & Herrera-Viedma, E. (2000). The ordered weighted geometric operator: properties and application in MCDM Problems. In Proceedings of the 8th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), Citeseer.
  • Chou, J.-S., Pham, A.-D., & Wang, H. (2013). Bidding strategy to support decision-making by integrating fuzzy AHP and regression-based simulation. Automation in Construction 35, 517–527.
  • da Costa Sousa, J. M., & Kaymak, U. (2001). Model predictive control using fuzzy decision functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31(1), 54–65.
  • Dejus, T., & Antucheviciene, J. (2013). Assessment of health and safety solutions at a construction site. Journal of Civil Engineering and management, 19(5), 728–737.
  • Deng, J. (1982). Grey system fundamental method. Huazhong University of Science and Technology Wuhan, China.
  • Deng, J. (1988). Grey system. Beijing: China Ocean Press.
  • Dubois, D., & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy Sets and Systems, 3(1), 37–48.
  • Ertay, T., Kahraman, C., & Kaya, İ. (2013). Evaluation of renewable energy alternatives using MACBETH and fuzzy AHP multicriteria methods: the case of Turkey. Technological and Economic Development of Economy, 19(1), 38–62.
  • Fodor, J. C., & Roubens, M. (1995). Characterization of weighted maximum and some related operations. Information Sciences, 84(3), 173–180.
  • Fontela, E., & Gabus, A. (1976). The DEMATEL observer, DEMATEL.
  • Gadakh, V., Shinde, V., & Khemnar, N. (2013). Optimization of welding process parameters using MOORA method. The International Journal of Advanced Manufacturing Technology, 69(9–12), 2031–2039.
  • Gal, T., Stewart, T., & Hanne, T. (1999). Multicriteria decision making: Advances in MCDM models, algorithms, theory, and applications. Cambridge, MA: Da Capo Press.
  • Gudiene, N., Banaitis, A., Podvezko, V., & Banaitiene, N. (2014). Identification and evaluation of the critical success factors for construction projects in Lithuania: AHP approach. Journal of Civil Engineering and Management, 20(3), 350–359.
  • Hashemkhani Zolfani, S., Farrokhzad, M., & Turskis, Z. (2013b). Investigating on successful factors of online games based on explorer. E & M: Ekonomie a Management, 16(2), 161–169.
  • Hashemkhani Zolfani, S., & Saparauskas, J. (2013). New application of SWARA method in prioritizing sustainability assessment indicators of energy system. Inzinerine Ekonomika-Engineering Economics, 24(5), 408–414.
  • Hashemkhani Zolfani, S., Aghdaie, M. H., Derakhti, A., Zavadskas, E. K., & Morshed Varzandeh, M. H. (2013b). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Systems with Applications, 40(17), 7111–7121.
  • Hashemkhani Zolfani, S., & Bahrami, M. (2014). Investment prioritizing in high tech industries based on SWARA-COPRAS approach. Technological and Economic Development of Economy, 20(3), 534–553.
  • Hatami-Marbini, A., Tavana, M., Moradi, M., & Kangi, F. (2013). A fuzzy group Electre method for safety and health assessment in hazardous waste recycling facilities. Safety Science, 51(1), 414–426.
  • Hong, D. H., & Choi, C.-H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 114(1), 103–113.
  • Hsu, L.-C. (2015). Using a decision-making process to evaluate efficiency and operating performance for listed semiconductor companies. Technological and Economic Development of Economy, 21(2), 301–331.
  • Hwang, C.-L., & Lin, M.-J. (1987). Group decision making under multiple criteria. Berlin: Springer.
  • Hwang, C.-L., Masud, A. S. M., Paidy, S. R., & Yoon, K. P. (1979). Multiple objective decision making, methods and applications: A state-of-the-art survey. Berlin: Springer.
  • Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications, A State of the Art Survey. New York: Springer.
  • Hwang, F. P., Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making: Methods and applications. Berlin: Springer.
  • Inuiguchi, M., Ichihashi, H., & Tanaka, H. (1990). Fuzzy programming: A survey of recent developments. In Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (pp. 45–68). Dordrecht: Springer.
  • Jana, T. K., Bairagi, B., Paul, S., Sarkar, B., & Saha, J. (2013). Dynamic schedule execution in an agent based holonic manufacturing system. Journal of Manufacturing Systems, 32(4), 801–816.
  • Jaskowski, P., Biruk, S., & Bucon, R. (2010). Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment. Automation in Construction, 19(2), 120–126.
  • Jato-Espino, D., Castillo-Lopez, E., Rodriguez-Hernandez, J., & Canteras-Jordana, J. C. (2014). A review of application of multi-criteria decision-making methods in construction. Automation in Construction, 45, 151–162.
  • Kahraman, C., & Çebı˙, S. (2009). A new multi-attribute decision making method: Hierarchical fuzzy axiomatic design. Expert Systems with Applications, 36(3, Part 1), 4848–4861.
  • Kahraman, C., & Kaya, İ. (2012). A fuzzy multiple attribute utility model for intelligent building assessment. Journal of Civil Engineering and Management, 18(6), 811–820.
  • Kaklauskas, A., Tupenaite, L., Kanapeckiene, L., & Naimaviciene, J. (2013). Knowledge-based model for standard housing renovation. Procedia Engineering, 57, 497–503.
  • Kaklauskas, A., Zavadskas, E. K., Naimaviciene, J., Krutinis, M., Plakys, V., & Venskus, D. (2010). Model for a complex analysis of intelligent built environment. Automation in Construction, 19(3), 326–340.
  • Kaklauskas, A., Zavadskas, E. K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and Buildings, 38(5), 454–462.
  • Kaklauskas, A., Zavadskas, E. K., & Trinkunas, V. (2007b). A multiple criteria decision support on-line system for construction. Engineering Applications of Artificial Intelligence, 20(2), 163–175.
  • Kalibatas, D., & Turskis, Z. (2008). Multicriteria evaluation of inner climate by using MOORA method. Information Technology and Control, 37(1), 79–83.
  • Kalibatas, D., Zavadskas, E. K., & Kalibatiene, D. (2012). A method of multi-attribute assessment using ideal alternative: Choosing an apartment with optimal indoor environment. International Journal of Strategic Property Management, 16(3), 338–353.
  • Kanapeckiene, L., Kaklauskas, A., Zavadskas, E. K., & Seniut, M. (2010). Integrated knowledge management model and system for construction projects. Engineering Applications of Artificial Intelligence, 23(7), 1200–1215.
  • Kaya, İ., & Kahraman, C. (2014). A comparison of fuzzy multicriteria decision making methods for intelligent building assessment. Journal of Civil Engineering and Management, 20(1), 59–69.
  • Keeney, R. L., Raiffa, H., & Rajala, D. W. (1979). Decisions with multiple objectives: Preferences and value trade-offs. IEEE Transactions on Systems, Man and Cybernetics, 9(7), 403–403.
  • Kersuliene, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision-making model for architect selection. Technological and Economic Development of Economy, 17(4), 645–666.
  • Kersuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258.
  • Kildiene, S. (2013). Assessment of opportunities for construction enterprises in European Union member states using the MULTIMOORA method. Procedia Engineering 57, 557–564.
  • Koksalan, M. M., & Wallenius, J., & Zionts, S. (2011). Multiple criteria decision making: from early history to the 21st century. Singapore: World Scientific.
  • Kracka, M., Zavadskas, E. K. (2013). Panel building refurbishment elements effective selection by applying multiple-criteria methods. International Journal of Strategic Property Management, 17(2), 210–219.
  • Krylovas, A., Zavadskas, E. K., Kosareva, N., & Dadelo, S. (2014). New KEMIRA method for determining criteria priority and weights in solving MCDM problem. International Journal of Information Technology & Decision Making, 13(6), 1119–1133.
  • Kucukvar, M., Gumus, S., Egilmez, G., & Tatari, O. (2014). Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision-making method. Automation in Construction, 40, 33–43.
  • Lapinskiene, V., & Martinaitis, V. (2013). The framework of an optimization model for building envelope. Procedia Engineering 57, 670–677.
  • Li, D.-F. (2005). Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of Computer and System Sciences, 70(1), 73–85.
  • Lin, L.-K., Chang, C.-C., & Lin, Y.-C. (2011). Structure development and performance evaluation of construction knowledge management system. Journal of Civil Engineering and Management, 17(2), 184–196.
  • Liu, H.-W., & Wang, G.-J. (2007). Multi-criteria decision-making methods based on intuitionistic fuzzy sets. European Journal of Operational Research, 179(1), 220–233.
  • MacCrimmon, K. R. (1968). Decision making among multiple-attribute alternatives: A survey and consolidated approach, DTIC Document.
  • Maity, S. R., Chatterjee, P., & Chakraborty, S. (2012). Cutting tool material selection using grey complex proportional assessment method. Materials & Design, 36, 372–378.
  • Marcic, D., Ceric, A., & Kovacevic, M. S. (2013). Selection of a field testing method for karst rock mass deformability by multi criteria decision analysis. Journal of Civil Engineering and Management, 19(2), 196–205.
  • Mardani, A., Jusoh, A., Md Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015a). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571.
  • Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015b). Fuzzy multiple criteria decision-making techniques and applications–Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148.
  • Mareschal, B., Brans, J. P., & Vincke, P. (1984). PROMETHEE: A new family of outranking methods in multicriteria analysis, ULB–Universite Libre de Bruxelles.
  • Medineckiene, M., & Bjork, F. (2011). Owner preferences regarding renovation measures–the demonstration of using multi-criteria decision making. Journal of Civil Engineering and Management, 17(2), 284–295.
  • Miettinen, K. (1999). Nonlinear multiobjective optimization. Berlin: Springer.
  • Miyamoto, S., Liu, Z.-Q., & Kunii, T. (2000). Soft computing and human-centered machines. New York: Springer.
  • Mohammadi, F., Sadi, M. K., Nateghi, F., Abdullah, A., & Skitmore, M. (2014). A hybrid quality function deployment and cybernetic analytic network process model for project manager selection. Journal of Civil Engineering and Management, 20(6), 795–809.
  • Moravej, Z., & Afshar, H. (2014). Optimal Planning of microgrid using multi criteria decision analysis. International Journal of Multidisciplinary Sciences and Engineering, 5(8), 1–6.
  • Mulliner, E., Smallbone, K., & Maliene, V. (2013). An assessment of sustainable housing affordability using a multiple criteria decision-making method. Omega, 41(2), 270–279.
  • Nazarko, J., & Chodakowska, E. (2015). Measuring productivity of construction industry in Europe with Data Envelopment Analysis. Procedia Engineering, 122, 204–212.
  • Nguyen, H.-T., Dawal, S. Z. M., Nukman, Y., & Aoyama, H. (2014). A hybrid approach for fuzzy multi-attribute decision making in machine tool selection with consideration of the interactions of attributes. Expert Systems with Applications, 41(6), 3078–3090.
  • Nieto-Morote, A., & Ruz-Vila, F. (2012). A fuzzy multi-criteria decision-making model for construction contractor prequalification. Automation in Construction, 25, 8–19.
  • Nuuter, T., Lill, I., & Tupenaite, L. (2015). Comparison of housing market sustainability in European countries based on multiple criteria assessment. Land Use Policy, 42, 642–651.
  • Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5–21.
  • Opricovic, S., & Tzeng, G. H. (2002). Multicriteria planning of post‐earthquake sustainable reconstruction. Computer‐Aided Civil and Infrastructure Engineering, 17(3), 211–220.
  • Peneva, V., & Popchev, I. (2008). Multicriteria decision making based on fuzzy relations. Cybernetics and Information Technologies, 8(4), 3–12.
  • Pinter, U., Psunder, I. (2013). Evaluating construction project success with use of the M-TOPSIS method. Journal of Civil Engineering and Management, 19(1), 16–23.
  • Podvezko, V. (2011). The comparative analysis of MCDA methods SAW and COPRAS. Engineering Economics, 22(2), 134–146.
  • Popovic, G., Stanujkic, D., & Stojanovic, S. (2012). Investment project selection by applying copras method and imprecise data. Serbian Journal of Management, 7(2), 257–269.
  • Rabbani, A., Zamani, M., Yazdani-Chamzini, A., & Zavadskas, E. K. (2014). Proposing a new integrated model based on sustainability balanced scorecard (SBSC) and MCDM approaches by using linguistic variables for the performance evaluation of oil producing companies. Expert Systems with Applications, 41(16), 7316–7327.
  • Radziszewski, P., Nazarko, J., Vilutiene, T., & et al. (2016). Future trends in road pavement technologies development in the context of environmental protection. Baltic Journal Of Road And Bridge Engineering, 11(2), 160?168.
  • Razavi Hajiagha, S. H., Hashemi, S. S., & Zavadskas, E. K. (2013). A complex proportional assessment method for group decision making in an interval-valued intuitionistic fuzzy environment. Technological and Economic Development of Economy, 19(1), 22–37.
  • Roy, B. (1968). Classement et choix en présence de points de vue multiples. RAIRO-Operations Research-Recherche Opérationnelle 2 (V1), 57–75.
  • Roy, B. (1971). Problems and methods with multiple objective functions. Mathematical Programming, 1(1), 239–266.
  • Roy, B. (1978). ELECTRE III: Un algorithme de classements fondé sur une représentation floue des préférences en présence de criteres multiples. Cahiers du CERO, 20(1), 3–24.
  • Roy, B. (1996). Multicriteria methodology for decision aiding. Boston: Springer.
  • Roy, B., & Bertier, P. (1973). La Méthode ELECTRE II (Une application au média-planning…).
  • Ruzgys, A., Volvaciovas, R., Ignatavicius, C., & Turskis, Z. (2014). Integrated evaluation of external wall insulation in residential buildings using SWARA-TODIM MCDM method. Journal of Civil Engineering and Management, 20(1), 103–110.
  • Saaty, T. L. (1971). On polynomials and crossing numbers of complete graphs. Journal of Combinatorial Theory, Series A 10(2), 183–184.
  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resources allocation. New York: McGraw.
  • Saaty, T. L. (1988). What is the analytic hierarchy process? Cham: Springer.
  • Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process. Pittsburgh: University of Pittsburgh.
  • Safa, M., Shahi, A., Haas, C. T., & Hipel, K. W. (2014). Supplier selection process in an integrated construction materials management model. Automation in Construction, 48, 64–73.
  • Sahu, A. K., Sahu, N. K., & Sahu, A. K. (2014). Appraisal of CNC machine tool by integrated MULTI-MOORA-IVGN circumferences: An empirical study. Grey Systems: Theory and Application, 4(1), 104–123.
  • Simanaviciene, R., Liaudanskiene, R., & Ustinovichius, L. (2012). A new synthesis method of structural, technological and safety decisions (SyMAD-3). Journal of Civil Engineering and Management, 18(2), 265–276.
  • Siozinyte, E., & Antucheviciene, J. (2013). Solving the problems of daylighting and tradition continuity in a reconstructed vernacular building. Journal of Civil Engineering and Management, 19(6), 873–882.
  • Skibniewski, M. J., & Chao, L.-C. (1992). Evaluation of advanced construction technology with AHP method. Journal of Construction Engineering and Management, 118(3), 577–593.
  • Sliogeriene, J., Turskis, Z., & Streimikiene, D. (2013). Analysis and choice of energy generation technologies: The multiple criteria assessment on the case study of Lithuania. Energy Procedia 32, 11–20.
  • Słowiński, R. (1986). A multicriteria fuzzy linear programming method for water supply system development planning. Fuzzy Sets and Systems, 19(3), 217–237.
  • Staniunas, M., Medineckiene, M., Zavadskas, E. K., & Kalibatas, D. (2013). To modernize or not: Ecological–economical assessment of multi-dwelling houses modernization. Archives of Civil and Mechanical Engineering, 13(1), 88–98.
  • Stankeviciene, J., & Sviderske, T. (2012). Country risk assessment based on MULTIMOORA. In The 7th international scientific conference Business and Management (pp. 530–536).
  • Stanujkic, D., Magdalinovic, N., Milanovic, D., Magdalinovic, S., & Popovic, G. (2014). An efficient and simple multiple criteria model for a grinding circuit selection based on MOORA method. Informatica, 25(1), 73–93.
  • Streimikiene, D., Balezentis, T., Krisciukaitiene, I., & Balezentis, A. (2012). Prioritizing sustainable electricity production technologies: MCDM approach. Renewable and Sustainable Energy Reviews, 16(5), 3302–3311.
  • Tamosaitiene, J., & Gaudutis, E. (2013). Complex assessment of structural systems used for high-rise buildings. Journal of Civil Engineering and Management, 19(2), 305–317.
  • Tarlochan, F., Samer, F., Hamouda, A. M. S., Ramesh, S., & Khalid, K. (2013). Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures, 71, 7–17.
  • Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529–539.
  • Torra, V., & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. In 2009 IEEE International Conference on Fuzzy Systems (pp. 1378–1382).
  • Turskis, Z. (2008). Multi‐attribute contractors ranking method by applying ordering of feasible alternatives of solutions in terms of preferability technique. Technological and Economic Development of Economy, 14(2), 224–239.
  • Turskis, Z., Zavadskas, E. K., Antucheviciene, J., & Kosareva, N. (2015). A hybrid model based on fuzzy AHP and fuzzy WASPAS for construction site selection. International Journal of Computers Communications & Control, 10(6), 113–128.
  • Turskis, Z., & Zavadskas, E. K. (2010a). A new fuzzy additive ratio assessment method (ARAS‐F). Case study: The analysis of fuzzy multiple criteria in order to select the logistic centers location. Transport, 25(4), 423–432.
  • Turskis, Z., & Zavadskas, E. K. (2010b). A novel method for multiple criteria analysis: Grey additive ratio assessment (ARAS-G) method. Informatica , 21(4), 597–610.
  • Turskis, Z., Zavadskas, E. K., & Kutut, V. (2013). A model based on ARAS-G and AHP methods for multiple criteria prioritizing of heritage value. International Journal of Information Technology & Decision Making, 12( 1), 45–73.
  • Tzeng, G.-H., & Huang, J.-J. (2011). Multiple attribute decision making: Methods and applications. Boca Raton: CRC Press.
  • Ulubeyli, S., & Kazaz, A. (2009). A multiple criteria decision‐making approach to the selection of concrete pumps. Journal of Civil Engineering and Management, 15(4), 369–376.
  • Uzsilaityte, L., & Martinaitis, V. (2010). Search for optimal solution of public building renovation in terms of life cycle. Journal of Environmental Engineering and Landscape Management, 18(2), 102–110.
  • Vafaeipour, M., Hashemkhani Zolfani, S., Morshed Varzandeh, M. H., Derakhti, A., & Keshavarz Eshkalag, M. (2014). Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision-making approach. Energy Conversion and Management, 86, 653–663.
  • Vahdani, B., Mousavi, S. M., Tavakkoli-Moghaddam, R., Ghodratnama, A., & Mohammadi, M. (2014). Robot selection by a multiple criteria complex proportional assessment method under an interval-valued fuzzy environment. The International Journal of Advanced Manufacturing Technology, 72(5–8), 687–697.
  • Wang, W.-C., Yu, W.-D., Yang, I.-T., Lin, C.-C., Lee, M.-T., & Cheng, Y.-Y. (2013). Applying the AHP to support the best-value contractor selection–lessons learned from two case studies in Taiwan. Journal of Civil Engineering and Management, 19(1), 24–36.
  • Xu, Z. (2004a). EOWA and EOWG operators for aggregating linguistic labels based on linguistic preference relations, International Journal of Uncertainty. Fuzziness and Knowledge-based Systems, 12(6), 791–810.
  • Xu, Z. (2004b). A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Information Sciences, 166(1), 19–30.
  • Xu, Z., & Da, Q. (2002). The ordered weighted geometric averaging operators. International Journal of Intelligent Systems, 17(7), 709–716.
  • Yager, R. R. (1986). A characterization of the extension principle. Fuzzy Sets and Systems, 18(3), 205–217.
  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, 18(1), 183–190.
  • Yager, R. R. (1994). On weighted median aggregation. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2(1), 101–113.
  • Yager, R. R. (2004). OWA aggregation over a continuous interval argument with applications to decision making. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(5), 1952–1963.
  • Yu, D., Wu, Y., Zhou, W. (2012). Generalized hesitant fuzzy Bonferroni mean and its application in multi-criteria group decision making. Journal of Information and Computational Science, 9(2), 267–274.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
  • Zavadskas, E. K., & Antucheviciene, J. (2007). Multiple criteria evaluation of rural building's regeneration alternatives. Building and Environment, 42(1), 436–451.
  • Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. R., Hashemi, S. S. (2014a). Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Applied Soft Computing, 24, 1013–1021.
  • Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. R., & Hashemi, S. S. (2015c). The interval-valued intuitionistic fuzzy MULTIMOORA method for group decision making in engineering. Mathematical Problems in Engineering, Article Number 560690.
  • Zavadskas, E. K., Antucheviciene, J., Saparauskas, J., & Turskis, Z. (2013a). MCDM methods WASPAS and MULTIMOORA: Verification of robustness of methods when assessing alternative solutions. Economic Computation and Economic Cybernetics Studies and Research, 47(2), 5–20.
  • Zavadskas, E. K., Kaklauskas, A., & Sarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and Economic Development of Economy, 1(3), 131–139.
  • Zavadskas, E. K., Kaklauskas, A., Banaitis, A., & Kvederyte, N. (2004). Housing credit access model: The case for Lithuania. European Journal of Operational Research, 155(2), 335–352.
  • Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamosaitiene, J. (2008c). Selection of the effective dwelling house walls by applying attributes values determined at intervals. Journal of Civil Engineering and Management, 14(2), 85–93.
  • Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamosaitiene, J. (2009b). Multi-attribute decision-making model by applying grey numbers. Informatica, 20(2), 305–320 .
  • Zavadskas, E. K., Skibniewski, M. J., & Antucheviciene, J. (2014b). Performance analysis of civil engineering journals based on the Web of Science® database. Archives of Civil and Mechanical Engineering, 14(4), 519–527.
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and Economic Development of Economy, 16(2), 159–172.
  • Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2015b). Selecting a contractor by using a novel method for multiple attribute analysis: Weighted aggregated sum product assessment with grey values (WASPAS-G). Studies in Informatics and Control, 24(2), 141–150.
  • Zavadskas, E. K., Turskis, Z., & Bagocius, V. (2015a). Multi-criteria selection of a deep-water port in the Eastern Baltic Sea. Applied Soft Computing, 26, 180–192.
  • Zavadskas, E. K., Turskis, Z., & Kildiene, S. (2014c). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179.
  • Zavadskas, E. K., Turskis, Z., & Tamosaitiene, J. (2010b). Risk assessment of construction projects. Journal of Civil Engineering and Management, 16(1), 33–46.
  • Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2010a). Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method. Archives of Civil and Mechanical Engineering, 10(3), 123–141.
  • Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012a). Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika, 122(6), 3–6.
  • Zeleny, M., & Cochrane, J. L. (1982). Multiple criteria decision making. New York: McGraw-Hill.
  • Zhu, B., Xu, Z., & Xia, M. (2012). Hesitant fuzzy geometric Bonferroni means. Information Sciences, 205, 72–85.