1,133
Views
6
CrossRef citations to date
0
Altmetric
Articles

Cost allocation for the problem of pollution reduction: a dynamic cooperative game approach

, , , &
Pages 1717-1736 | Received 22 Mar 2016, Accepted 26 Jan 2018, Published online: 13 Feb 2019

References

  • Akimoto, K., Matsunaga, A., Fujii, Y., & Yamaji, K. (2000). Game theoretic analysis for carbon emission permits trading among multiple world regions with an optimizing global energy model. Electrical Engineering in Japan, 131(2), 40–50.
  • Asheim, G. B., Froyn, C. B., Hovi, J., & Menz, F. C. (2006). Regional versus global cooperation for climate control. Journal of Environmental Economics and Management, 51(1), 93–109.
  • Benchekroun, H., & Taherkhani, F. (2014). Adaptation and the Allocation of Pollution Reduction Costs. Dynamic Games and Applications, 4(1), 32–57.
  • Botteon, M. & Carraro, C. (1997). Environmental Coalitions with Heterogeneous Countries: Burden-Sharing and Carbon Leakage (Working Paper No. 24.98). Fondazione Eni Enrico Mattei.
  • Buchner, B., & Carraro, C. (2004). Emission trading regimes and incentives to participate in international climate agreements. European Environment, 14(5), 276–289.
  • Burniaux, J.-M., Chateau, J., Dellink, R., Duval, R., & Jamet, S. (2009). The economics of climate change mitigation.
  • Carraro, C., & Moriconi, F. (1997). International games on climate change control. Fondazione Eni Enrico Mattei Working Paper, (22.98).
  • Castro, J., Gómez, D., & Tejada, J. (2009). Polynomial calculation of the Shapley value based on sampling. Computers & Operations Research, 36(5), 1726–1730.
  • Chander, P., & Tulkens, H. (1992). Theoretical foundations of negotiations and cost sharing in transfrontier pollution problems. European Economic Review, 36(2), 388–399.
  • Chander, P., & Tulkens, H. (1995). A core-theoretic solution for the design of cooperative agreements on transfrontier pollution. International Tax and Public Finance, 2(2), 279–293.
  • Filar, J. A., & Gaertner, P. S. (1997). A regional allocation of world CO 2 emission reductions. Mathematics and Computers in Simulation, 43(3), 269–275.
  • Forgó, F., Fülöp, J., & Prill, M. (2005). Game theoretic models for climate change negotiations. European Journal of Operational Research, 160(1), 252–267.
  • Gaertner, P. S. (2001). Optimisation analysis and integrated models of the enhanced greenhouse effect. Environmental Modeling & Assessment, 6(1), 7–34.
  • Germain, M., Toint, P., Tulkens, H., & De Zeeuw, A. (2003). Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. Journal of Economic Dynamics and Control, 28(1), 79–99.
  • Haurie, A., & Viguier, L. (2003). A stochastic dynamic game of carbon emissions trading. Environmental Modeling & Assessment, 8(3), 239–248.
  • Kaitala, V., Mäler, K. G., & Tulkens, H. (2006). The acid rain game as a resource allocation process, with application to negotiations between Finland, Russia and Estonia. In P. Chander, J. Drèze, C.K. Lovell, & J. Mintz (Eds.), Public goods, environmental externalities and fiscal competition. Boston, MA: Springer.
  • Kozlovskaya, N., Petrosyan, L., & Zenkevich, N. (2010). Coalitional solution of a game-theoretic emission reduction model. International Game Theory Review, 12(3), 275–286.
  • Littlechild, S. C., & Owen, G. (1973). A simple expression for the Shapley value in a special case. Management Science, 20(3), 370–372.
  • Littlechild, S. C., & Thompson, G. F. (1977). Aircraft landing fees: a game theory approach. The Bell Journal of Economics, 8(1), 186–204.
  • Okada, A. (2007). International negotiations on climate change: a noncooperative game analysis of the Kyoto protocol. In R. Avenhaus, & I.W. Zartman (Eds.), Diplomacy Games. Berlin, Heidelberg: Springer.
  • Petrosjan, L. A. (1993). Differential Games of Pursuit. World Scientific. Retrieved from https://doi.org/10.1142/1670
  • Petrosjan, L. A., & Zenkevich, N. A. (2015). Conditions for sustainable cooperation. Automation and Remote Control, 40(9), 1894–1904.
  • Petrosjan, L., & Zaccour, G. (2003). Time-consistent Shapley value allocation of pollution cost reduction. Journal of Economic Dynamics and Control, 27(3), 381–398.
  • Pittel, K., & Rübbelke, D. T. G. (2012). Transitions in the negotiations on climate change: from prisoner’s dilemma to chicken and beyond. International Environmental Agreements: Politics, Law and Economics, 12(1), 23–39.
  • Ringius, L., Torvanger, A., & Underdal, A. (2002). Burden sharing and fairness principles in international climate policy. International Environmental Agreements, 2(1), 1–22.
  • Scheffran, J., & Pickl, S. (2000). Control and game-theoretic assessment of climate change: Options for Joint Implementation. Annals of Operations Research, 97(1–4), 203–212.
  • Shapley, L. S. (1953). Additive and non-additive set functions. Department of Mathematics, Princeton University.
  • Shapley, L. S. (1971). Cores of convex games. International Journal of Game Theory, 1(1), 11–26.
  • Shiqiu, C. L. Z. (2005). Gaming Analysis for Behaviors of the Enterprises Involving Emission Trading [J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 6, 12.
  • Svirezhev, Y. M., von Bloh, W., & Schellnhuber, H.-J. (1999). “Emission game”: some applications of the theory of games to the problem of CO2 emission. Environmental Modeling & Assessment, 4(4), 235–242.
  • Tulkens, H., & Eyckmans, J. (1999). Simulating with RICE Coalitionally Stable Burden Sharing Agreements for the Climate Change Problem. Center for Operations Research and Econometrics Working Paper, (9926).(CESifo Working Paper Series No. 228). Retrieved from https://ssrn.com/abstract=197069
  • Vázquez-Brage, M., Van den Nouweland, A., & Garcıa-Jurado, I. (1997). Owen’s coalitional value and aircraft landing fees. Mathematical Social Sciences, 34(3), 273–286.
  • Viguier, L. L. (2004). A proposal to increase developing country participation in international climate policy. Environmental Science & Policy, 7(3), 195–204.
  • Wu, P.-I., Chen, C. T., Cheng, P.-C., & Liou, J.-L. (2014). Climate game analyses for CO2 emission trading among various world organizations. Economic Modelling, 36, 441–446.