907
Views
38
CrossRef citations to date
0
Altmetric
Special Feature: Radiocesium dynamics in forest ecosystems after the Fukushima Nuclear Power Plant accident: Experiences during the initial five years

Radioactive contaminated forests in Fukushima and Chernobyl

, &
Pages 3-14 | Received 06 Feb 2017, Accepted 14 Jul 2017, Published online: 17 Aug 2017

References

  • Abaturov A. 1990. [Specifics of the spatial distribution of radiation damages to the pine forests near to the ChNPP]. In: Ryabov IN, Ryabtsev IA, editors. [Biological and radioecological aspects of consequences of the accident at the Chernobyl NPP]. Moscow: USSR Academy of Sciences; p. 17.
  • Abaturov Y, Gol’tsova N, Rostova N, Girbasova A, Abaturov A, Melankholin P. 1991. [Some peculiarities of radiation damage to pine in the zone of the accident at the Chernobyl NPP]. Ecologiya. 5:28–33.
  • Aoyama M, Kajino M, Tanaka TY, Sekiyama TT, Tsumune D, Tsubono T, Hamajima Y, Inomata Y, Gamo T. 2016. 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai‑ichi nuclear power plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J Oceanogr. 72:67-76.
  • Bunzl K, Schimmack W, Kreutzer K, Schierl R. 1989. Interception and retention of Chernobyl USSR-derived Cesium-134, Cesium-137 and Ruthenium-106 in a spruce stand. Sci Total Environ. 78:77–78.
  • Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H. 2011. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol. 48:1129–1134.
  • Cole DW, Rapp M. 1981. Elemental cycling in forest ecosystems. In: Reichle DE, editor. Dynamic properties of forest ecosystems. Cambridge. Cambridge University Press; p. 341–407.
  • Coppin F, Hurtevent P, Loffredo N, Simonucci C, Julien A, Gonze MA, Nanba K, Onda Y, Thiry Y. 2016. Radiocaesium partitioning in Japanese cedar forests following the “early” phase of Fukushima fallout redistribution. Scientific Rep. 6:37618.
  • Endo I, Ohte N, Iseda K, Tanoi K, Hirose A, Kobayashi NI, Murakami M, Tokuchi N, Ohashi M. 2015. Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima. J Environ Radioact. 149:176–185.
  • FAO-UNESCO. 1974. Soil map of the world. 1: 5000000. Volume I. Legend. Paris: UNESCO.
  • Fesenko S, Alexakhin R, Geras’kin S, Sanzharova N, Spirin Y, Spiridonov S, Gontarenko I, Strand P. 2005. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant. J Environ Radioact. 80:1–25.
  • Fesenko S, Soukhova N, Sanzharova N, Avila R, Spiridonov S, Klein D, Lucot E, Badot PM. 2001. Identification of processes governing long-term accumulation of 137Cs by forest trees following the Chernobyl accident. Radiat Environ Biophys. 40:105–113.
  • Fukushima Minpo News. 2016. Full-fledged work begins to build interim nuke waste storage site in Fukushima. [Internet]. [cited 2017 Jan 12]. http://www.fukushimaminponews.com/news.html?id=754.
  • Fukushima Prefecture. 2016. Steps for revitalization in Fukushima. [Internet]. [cited 2017 Jan 12]. http://www.pref.fukushima.lg.jp/uploaded/attachment/195693.pdf.
  • Geras’kin S, Evseeva T, Oudalova A. 2013. Effects of long-term chronic exposure to radionuclides in plant populations. J Environ Radioact. 121:22–32.
  • Geras’kin S, Fesenko S, Alexakhin R. 2008. Effects of non-human species irradiation after the Chernobyl NPP accident. Environ Int. 34:880–897.
  • Geras’kin S, Oudalova A, Dikareva N, Spiridonov S, Hinton T, Chernonog E, Garnier-Laplace J. 2011. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident. Ecotoxicology. 20:1195–1208.
  • Geras’kin S, Volkova P. 2014. Genetic diversity in Scots pine populations along a radiation exposure gradient. Sci Total Environ. 496:317–327.
  • Geraskin S, Dikarev V, Zyablitskaya Y, Oudalova A, Spirin Y, Alexakhin R. 2003. Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. J Environ Radioact. 66:155–169.
  • Geraskin S, Zimina L, Dikarev V, Dikareva N, Zimin V, Vasiliyev D, Oudalova A, Blinova L, Alexakhin R. 2003. Bioindication of the anthropogenic effects on micropopulations of Pinus sylvestris, L. in the vicinity of a plant for the storage and processing of radioactive waste and in the Chernobyl NPP zone. J Environ Radioact. 66:171–180.
  • Goor F, Thiry Y. 2004. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations. Sci Total Environ. 325:163–180.
  • Goor F, Thiry Y, Delvaux B. 2007. Radiocaesium accumulation in stemwood: integrated approach at the scale of forest stands for contaminated Scots pine in Belarus. Environ Manage. 85:129–136.
  • Hashimoto S, Ugawa S, Nanko K, Shichi K. 2012. The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Scientific Rep. 2:416.
  • IAEA. 1991. The international Chernobyl project. Vienna: IAEA. Technical Report. Assessment of Radiological Consequences and Evaluation of Protective Measures. Report by an International Advisory Committee.
  • IAEA. 2002. Modelling the migration and accumulation of radionuclides in forest ecosystems. Vienna: IAEA. Report of the Forest Working Group of the Biosphere Modelling and Assessment (BIOMASS) Programme, Theme 3.
  • IAEA. 2006. Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Vienna: IAEA. Report of the Chernobyl Forum Expert Group ‘Environment’.
  • IAEA. 2010. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Vienna: IAEA. Technical Reports Series No. 472.
  • IAEA. 2011. Fukushima nuclear accident update log. [Internet]. [ Updates 2011 Apr 12; cited 2017 Jan 12]. https://www.iaea.org/newscenter/news/fukushima-nuclear-accident-update-log-15.
  • IAEA. 2013. INES. The International Nuclear and Radiological Event Scale. User’s Manual 2008 Edition. Vienna: IAEA.
  • IAEA. 2015. The Fukushima Daiichi accident. Technical volume 5. Post-accident recovery. Vienna: IAEA.
  • IKEA of Sweden AB. 2011. Specification. Chemical compounds and substances. Spec. no: IOS-MAT-0010 Date: 2011-05-13 Version no: AA–10911–10. Almhult: IKEA of Sweden AB.
  • Inomata Y, Aoyama M, Tsubono T, Tsumune D, Hirose K. 2016. Spatial and temporal distributions of 134Cs and 137Cs derived from the TEPCO Fukushima Daiichi Nuclear Power Plant accident in the North Pacific Ocean by using optimal interpolation analysis. Environ Sci Process Impacts. 18:126–136.
  • Ioshchenko V, Nanba K, Takase T. 2015. Research on the effects of radiation on plants in Fukushima. In: [Proceedings of round table discussion of the effects of radiation on wildlife (FY Heisei 26)]. Chapter 5, p. 17–19. Tokyo: Japan Wildlife Research Center.
  • JAEA. 2015. JAEA-review 2014–051. Remediation of contaminated areas in the aftermath of the accident at the Fukushima Daiichi nuclear power station: overview, analysis and lessons learned. Part 1: a report on the decontamination pilot project”. Naka-gun: Japan Atomic Energy Agency.
  • Kal’chenko V, Arkhipov N, Fedotov I. 1993. [Mutagenesis of ferment locusts induced in Pinus sylvestris L. spores by ionizing irradiation associated with the ChNPP accident]. Genetika. 29:266–273.
  • Kal’chenko V, Rubanovich A, Fedotov I, Arkhipov N. 1993. [Genetic effects induced by the ChNPP accident in sexual cells of Pinus sylvestris L. species]. Genetika. 29:1205–1212.
  • Kaneko N, Huang Y, Nakamori T. 2015. [Decontamination of radio Cs from forest soils using biodiversity and the functioning of soil organisms]. J Jpn For Society. 97:75–80.
  • Kashparov V. 2002. Assessment of the radiological situation resulted by the accidental release of fuel particles. Radioprotection – Colloques. 37:1061–1066.
  • Kashparov V, Ahamdach N, Zvarich S, Yoschenko V, Maloshtan M, Dewiere L. 2004. Kinetics of dissolution of Chernobyl fuel particles in soil in natural conditions. J Environ Radioact. 72:335–353.
  • Kashparov V, Ivanov Y, Zvarisch S, Protsak V, Khomutinin Y, Kurepin A, Pazukhin E. 1996. Formation of hot particles during the Chernobyl nuclear power plant. Nucl Technol. 114:246–253.
  • Kashparov V, Lundin S, Zvarych S, Yoshchenko V, Levchuk S, Khomutinin Y, Maloshtan I, Protsak V. 2003. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ. 317:105–119.
  • Kashparov V, Oughton D, Zvarich S, Protsak V, Levchuk S. 1999. Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30-km exclusion zone. Health Phys. 76:251–259.
  • Kashparov V, Protsak V, Ahamdach N, Stammose D, Peres JM, Yoschenko V, Zvarich S. 2000. Dissolution kinetics of particles of irradiated Chernobyl nuclear fuel: influence of pH and oxidation state on the release of radionuclides in the contaminated soil of Chernobyl. J Nucl Mater. 279:225–233.
  • Kashparov V, Yoschenko V, Levchuk S, Bugai D, Van Meir N, Simonucci C, Martin-Garin A. 2012. Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone – Part 1: characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota. Appl Geochem. 27:1348–1358.
  • Kato H, Onda Y, Gomi T. 2012. Interception of the Fukushima reactor accident derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys Res Lett. 39:L20403.
  • Kato H, Onda Y, Hisadome K, Loffredo N, Kawamori A. 2017. Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact. 166:449–457.
  • Komatsu M, Kaneko S, Ohashi S, Kuroda K, Sano T, Ikeda S, Saito S, Kiyono Y, Tonosaki M, Miura S, et al. 2016. Characteristics of initial deposition and behavior of radiocesium in forest ecosystems of different locations and species affected by the Fukushima Daiichi Nuclear Power Plant accident. J Environ Radioact. 161:2–10.
  • Kozubov G, Taskaev A. 2002. [Radiobiological studies of coniferous species in the area of the ChNPP accident]. Moscow: Design.Information.Cartography.
  • Kozubov G, Taskaev A, Fedotov I, Arkhipov N, Davydchuk V, Abaturov Y. 1991. [Schematic map of radiation damages of forests in the zone of the accident at the Chernobyl NPP (scale 1:100000) with the explanatory note]. Syktyvkar: Komi Branch of AS USSR.
  • Kozubov G, Taskaev A, Ignatenko E, Artemov V, Ostapenko E, Ladanova N, Kuzivanova S, Kozlov V, Larin V. 1990. [Radiation influence to the pine forests in the zone of the accident at the Chernobyl NPP]. Syktyvkar: Komi Branch of AS USSR.
  • Kozubov G, Taskaev A, Ladanova N, Kuzivanova S, Artemov V. 1987. [Radioecological investigations of the pine forests in the region impacted by the accident at the Chernobyl NPP]. Syktyvkar: Komi Branch of AS USSR.
  • Kuchma N, Arkhipov N, Fedotov I, Tikhomirov F, Shcheglov A, Krinitskiy G, Kozubov G, Zibtsev S, Matukhno Y, Popov M, et al. 1994. [Radioecological and silvicultural consequences of contamination of forest ecosystems of the exclusion zone]. Chernobyl: STC SPA Prypiat.
  • Kuchma O, Finkeldey R. 2011. Evidence for selection in response to radiation exposure: pinus sylvestris in the Chernobyl exclusion zone. Environ Pollut. 159:1606–1612.
  • Loffredo N, Onda Y, Kawamori A, Kato H. 2014. Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident. Sci Total Environ. 493:701–707.
  • MAFF. 2011a. [About setting of provisional tolerance of radioactive cesium-containing fertilizer /soil improvement material /soil supplement and feed]. [Internet]. [cited 2017 Jun 26]. http://www.maff.go.jp/j/syouan/soumu/saigai/shizai.html.
  • MAFF. 2011b. [Q & A on setting immediate indicator values for firewood and charcoal for cooking and heating]. [Internet]. [cited 2017 Jun 26]. http://www.rinya.maff.go.jp/j/tokuyou/shintan4.html.
  • MAFF. 2012a. [Forest rate /artificial forest ratio by prefecture]. [Internet]. [cited 2017 Jan 12]. http://www.rinya.maff.go.jp/j/keikaku/genkyou/h24/pdf/shinrin_j_h24.pdf.
  • MAFF. 2012b. [On the revision of immediate index value of mushroom logs and medium for bacterial bed]. [Internet]. [cited 2017 Jun 26]. http://www.rinya.maff.go.jp/j/press/tokuyou/120328_2.html.
  • MAFF. 2014. Annual report on forest and forestry for FY2013. [Internet]. [cited 2017 Jan 12]. http://www.rinya.maff.go.jp/j/kikaku/hakusyo/25hakusyo/pdf/h25summary.pdf.
  • Mamikhin S, Tikhomirov F, Shcheglov A. 1997. Dynamics of 137Cs in the forests of the 30-km zone around the Chernobyl nuclear power plant. Sci Total Environ. 193:169–177.
  • Melin J, Wallberg L. 1991. Distribution and retention of cesium in Swedish Boreal forest ecosystems. In: Moberg J, editor. The Chernobyl fallout in Sweden, results from a research programme on environmental radiology. The Swedish radiation protection project. Lund: Arprint; p. 467–475.
  • METI. 2015. Ministry of economy, trade and industry. Assistance of residents affected by the nuclear incidents. Area to which evacuation orders have been issued. [Internet]. [cited 2017 Jan 12]. http://www.meti.go.jp/english/earthquake/nuclear/roadmap/pdf/150905MapOfAreas.pdf.
  • Ministry of Emergencies of Ukraine, All-Ukrainian Research Institute of Population and Territories Civil Defense from Technogenic and Natural Emergencies. 2006. 20 years after Chornobyl catastrophe. Kyiv: Atika. Future outlook: National Report of Ukraine.
  • Ministry of Emergencies of Ukraine, Intellectual systems GEO Ltd. 2008. Atlas. Ukraine. Radioactive contamination. [Internet]. [cited 2017 Jan 12]. http://radatlas.isgeo.com.ua/
  • Ministry of Health of Ukraine. 2005. [On approval of the State hygienic standards “Hygienic standard of specific activity of radionuclides (137) Cs and (90) Sr in wood and wood products]. Kyiv: Official Bulletin of Ukraine.
  • Mitrochenko V, Kyrychenko O, Kuchma M. 1999. [Influence of ionizing radiation on the forest plantations. Principles of forest radioecology]. Kyiv: Derzhkomlisgosp Ukraine.
  • Myttenaere C, Schell WR, Thiry Y, Sombre L, Ronneau C, van der Stegen de Schrieck J. 1993. Modelling of the 137Cs cycling in forest: recent developments and research needed. Sci Total Environ. 136:77–91.
  • Nishikiori T, Watanabe M, Koshikawa M, Takamatsu T, Ishii Y, Ito S, Takenaka A, Watanabe K, Hayashi S. 2015. Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident. Sci Total Environ. 502:611–616.
  • Ogawa H, Hirano Y, Igei S, Yokota K, Arai S, Ito H, Kumata A, Yoshida H. 2016. Changes in the distribution of radiocesium in the wood of Japanese cedar trees from 2011 to 2013. J Environ Radioact. 161:51–57.
  • Ohta H. 2011. Environmental remediation of contaminated area by the Fukushima-Daiichi NPP accident. [Internet]. [cited 2017 Jan 12]. https://www.iaea.org/OurWork/ST/NE/NEFW/WTS-Networks/IDN/idnfiles/IDN_AnnFor2011/Cleanup_activities-OHTA.pdf.
  • Perevolotsky A. 2006. Distribution of 137Cs and 90Sr in the forest biogeocenoses. Gomel’: RNIUP.
  • Shaw G. 2007. Radionuclides in forest ecosystems. Radioactivity Environ. 10:127–155.
  • Shcheglov A, Tikhomirov F, Tsvetnova O, Кiyashtorin A, Mamikhin S. 1996. [Biogeochemistry of Chernobyl-derived radionuclides in forest ecosystems of the European part of the CIS]. Radiats Biol Radiecol. 36:469–478.
  • Shcheglov A, Tsvetnova O, Klyashtorin A. 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Moscow: Nauka.
  • Shcheglov A, Tsvetnova O, Klyashtorin A. 2014. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems. Long-term dynamics of the migration processes. J Geochem Explor. 144:260–266.
  • Shevchenko V, Grinikh L. 1995. [Cytogenetic effects in Crepis tectorum populations growing in the Bryansk Region 7 years after the ChNPP accident]. Radiats Biol Radiecol. 35:720–725.
  • Smirnov E, Suvorova L. 1996.Estimation and prediction of biological effects of radioactive contaminationon the plant cover in the Chernobyl affected area. In: Taskaev A, editor. Effects of radioactive contamination on terrestrial ecosystems in the Chernobyl affected areas. Syktyvkar: Komi Branch of AS USSR; p. 27–37.
  • Sombre L, Vanhouche M, Thiry Y, Ronneau C, Lambotte JM, Myttenaere C. 1990. Transfer of radiocesium in forest ecosystems resulting from a nuclear accident. In: Desmet G, editor. Transfer of radionuclides in natural and seminatural environments. London: Elsevier.
  • Steinhauser G, Brandl A, Johnson TE. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ. 470–471:800–817.
  • Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ. 2012. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chem Phys. 12:2313–2343.
  • Teramage M, Onda Y, Kato H, Gomi T. 2014. The role of litterfall in transferring Fukushima-derived radiocesium to a coniferous forest floor. Sci Total Environ. 490:435–439.
  • Thiry Y, Colle C, Yoschenko V, Levchuk S, Van Hees M, Hurtevent P, Kashparov V. 2009. Impact of Scots pine (Pinus sylvestris L.) plantings on long term 137Cs and 90Sr recycling from a waste burial site in the Chernobyl Red Forest. J Environ Radioact. 100:1062–1068.
  • Tikhomirov F, Shcheglov A. 1994. Main investigation results on the forest radioecology in the Kyshtym and Chernobyl accident zones. Sci Total Environ. 157:45–57.
  • Tikhomirov F, Sidorov V. 1990. [Radiation damage of forest in the ChNPP zone]. In: Ryabov IN, Ryabtsev IA, editors. [Biological and radioecological aspects of consequences of the accident at the Chernobyl NPP]. Moscow: USSR Academy of Sciences; p. 18.
  • Tsubono T, Misumi K, Tsumune D, Bryan FO, Hirose K, Aoyama M. 2016. Evaluation of radioactive cesium impact from atmospheric deposition and direct release fluxes into the North Pacific from the Fukushima Daiichi nuclear power plant. Deep Sea Res Part I Oceanogr Res Papers. 115:10–21.
  • Uematsu S, Smolders E, Sweeck L, Wannijn J, Van Hees M, Vandenhove H. 2015. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils. Sci Total Environ. . 524–525:148–156.
  • Ulanovsky A, Pröhl G. 2008. Tables of dose conversion coefficients for estimating internal and external radiation exposures to terrestrial and aquatic biota. Radiat Environ Biophys. 47:195–203.
  • UNSCEAR. 2000. Exposures and effects of the Chernobyl accident (Annex J). New York: United Nations.
  • UNSCEAR. 2008. Sources and effects of ionizing radiation (annex D). New York: United Nations.
  • UNSCEAR. 2015. Developments since the 2013 UNSCEAR Report on the levels and effects of radiation exposure due to the nuclear accident following the Great East-Japan earthquake and tsunami. A 2015 white paper to guide the Scientific Committee’s future programme of work. New York: United Nations.
  • Verkhovna Rada of Ukraine. 1991. [On the legal regime of the territories exposed to radioactive contamination in consequence of the catastrophe at the Chernobyl NPP]. Bulletin of Verkhovna Rada. 16. Kyiv: Verkhovna Rada of Ukraine.
  • Watanabe Y, Ichikawa S, Kubota M, Hoshino J, Kubota Y, Maruyama Y, Fuma S, Kawaguchi I, Yoschenko V, Yoshida S. 2015. Morphological defects in native Japanese fir trees around the Fukushima Daiichi Nuclear Power Plant. Scientific Rep. 5:13232.
  • Yasutaka T, Naito W, Nakanishi J. 2013. Cost and effectiveness of decontamination strategies in radiation contaminated areas in Fukushima in regard to external radiation dose. PLoS One. 8(9):e75308.
  • Yoschenko V, Kashparov V, Melnychuk M, Levchuk S, Bondar Y, Lazarev M, Yoschenko M, Farfan E, Jannik T. 2011. Chronic irradiation of Scots pine trees (Pinus sylvestris) in the Chernobyl exclusion zone: dosimetry and radiobiological effects. Health Phys. 101:393–408.
  • Yoschenko V, Konoplev A, Takase T, Nanba K, Onda Y, Zheleznyak M, Kivva S. 2016. Radiocesium distributions and dynamics in the Fukushima forest ecosystems. Goldschmidt Conference, June 26–July 1, Yokohama, Japan. Goldschmidt Conference Abstracts. p. 3609.
  • Yoschenko V, Nanba K, Yoshida S, Watanabe Y, Takase T, Sato N, Keitoku K. 2016. Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear Power Plant. J Environ Radioact. 165:60–67.
  • Yoschenko V, Takase T, Konoplev A, Nanba K, Onda Y, Kivva S, Zheleznyak M, Sato N, Keitoku K. 2017. Radiocesium distribution and fluxes in the typical Cryptomeria japonica forest at the late stage after the accident at Fukushima Dai-Ichi Nuclear Power Plant. J Environ Radioact. 166:45–55.
  • Yoshida S, Muramatsu Y, Dvornik A, Zhuchenko T, Linkov I. 2004. Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. J Environ Radioact. 75:301–313.
  • Yoshida S, Muramatsu Y, Steiner M, Belli M, Pasquale A, Rafferty B, Rühm W, Rantawaara A, Linkov I, Dvornik A. 2002. Stable elements – as a key to predict radionuclide transport in the forest ecosystems. Radioprotection – Colloques. 37:391–396.
  • Yoshida S, Watanabe M, Suzuki A. 2011. Distribution of radiocesium and stable elements within a pine tree. Radiat Prot Dosimetry. 146:326–329.
  • Yoshihara T, Matsumura H, Hashida SN, Nagaoka T. 2013. Radiocesium contaminations of 20 wood species and the corresponding gamma-ray dose rates around the canopies at 5 months after the Fukushima nuclear power plant accident. J Environ Radioact. 115:449–457.
  • Yoshihara T, Matsumura H, Tsuzaki M, Wakamatsu T, Kobayashi T, Hashida SN, Nagaoka T, Goto F. 2014. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013. J Environ Radioact. 138:220–226.
  • Zelena L, Sorochinsky B, von Arnold S, van Zyl L, Clapham DH. 2005. Indications of limited altered gene expression in Pinus sylvestris trees from the Chernobyl region. J Environ Radioact. 84:363–373.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.