488
Views
4
CrossRef citations to date
0
Altmetric
Special feature: Long-term monitoring and research in Asian university forests: towards further understanding of environmental changes and ecosystem responses

Spatio-temporal variation in egg-laying dates of nestbox-breeding varied tits (Poecile varius) in response to spring pre-breeding period temperatures at long-term study sites in South Korea and Japan

, &
Pages 232-241 | Received 01 Oct 2019, Accepted 03 Jun 2020, Published online: 16 Jun 2020

References

  • Barton K. 2019. MuMIn: multi-model inference. [accessed 2020 May 01]. https://cran.r-project.org/web/packages/MuMIn/index.html.
  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P, et al. 2018. lme4: linear mixed-effects models using “Eigen” and S4. [accessed 2020 May 01]. https://CRAN.R-project.org/package=lme4.
  • Bell JR, Botham MS, Henrys PA, Leech DI, Pearce‐Higgins JW, Shortall CR, Brereton TM, Pickup J, Thackeray SJ. 2019. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Global Change Biol. 25(6):1982–1994. doi:10.1111/gcb.14592.
  • Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Jarvinen A, et al. 2004. Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc B Biol Sci. 271(1549):1657–1662. doi:10.1098/rspb.2004.2770.
  • Both C, Bouwhuis S, Lessells CM, Visser ME. 2006. Climate change and population declines in a long-distance migratory bird. Nature. 441(7089):81. doi:10.1038/nature04539.
  • Both C, Marvelde L. 2007. Climate change and timing of avian breeding and migration throughout Europe. Clim Res. 35(1–2):93–105. doi:10.3354/cr00716.
  • Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc B Biol Sci. 277(1685):1259–1266. doi:10.1098/rspb.2009.1525.
  • Bourgault P, Thomas D, Perret P, Blondel J. 2010. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican Blue Tit (Cyanistes caeruleus). Oecologia. 162(4):885–892. doi:10.1007/s00442-009-1545-0.
  • Burgess MD, Smith KW, Evans KL, Leech D, Pearce-Higgins JW, Branston CJ, Briggs K, Clark JR, Du Feu CR, Lewthwaite K, et al. 2018. Tritrophic phenological match–mismatch in space and time. Nat Ecol Evol. 2(6):970. doi:10.1038/s41559-018-0543-1.
  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York (NY): Springer.
  • Buse A, Dury SJ, Woodburn RJW, Perrins CM, Good JEG. 1999. Effects of elevated temperature on multi-species interactions: the case of Pedunculate Oak, Winter Moth and Tits. Funct Ecol. 13(Suppl.1):74–82. doi:10.1046/j.1365-2435.1999.00010.x.
  • Chen L, Huang JG, Ma Q, Hänninen H, Rossi S, Piao S, Bergeron Y. 2018. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Global Change Biol. 24(9):3969–3975. doi:10.1111/gcb.14288.
  • Chmura HE, Meddle SL, Wingfield JC, Hahn TP. 2017. Effects of a social cue on reproductive development and pre-alternate molt in seasonally breeding migrant and resident female songbirds (Zonotrichia leucophrys). J Exp Biol. 220(16):2947–2956. doi:10.1242/jeb.160994.
  • Creed IF, Spargo AT, Jones JA, Buttle JM, Adams MB, Beall FD, Booth EG, Campbell JL, Clow D, Elder K, et al. 2014. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America. Global Change Biol. 20(10):3191–3208. doi:10.1111/gcb.12615.
  • Crick HQP, Sparks TH. 1999. Climate change related to egg-laying trends. Nature. 399(6735):423. doi:10.1038/20839.
  • Dawson A. 2008. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos Trans R Soc B Biol Sci. 363(1497):1621–1633. doi:10.1098/rstb.2007.0004.
  • Donnelly A, Caffarra A, O’Neill BF. 2011. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol. 55(6):805–817. doi:10.1007/s00484-011-0426-5.
  • Drake A, Martin K. 2018. Local temperatures predict breeding phenology but do not result in breeding synchrony among a community of resident cavity-nesting birds. Sci Rep. 8(1):2756. doi:10.1038/s41598-018-20977-y.
  • Fletcher K, Howarth D, Kirby A, Dunn R, Smith A. 2013. Effect of climate change on breeding phenology, clutch size and chick survival of an upland bird. Ibis. 155(3):456–463.
  • Franklin JF. 1989. Importance and justification of long-term studies in ecology. In: Likens GE, editor. Long-term studies in ecology. New York (NY): Springer; p. 3–19.
  • Geiger R, Aron RH, Todhunter P. 2009. The climate near the ground. 7th ed. Lanham (MD): Rowman & Littlefield Publisher.
  • Gienapp P, Hemerik L, Visser ME. 2005. A new statistical tool to predict phenology under climate change scenarios. Global Change Biol. 11(4):600–606. doi:10.1111/j.1365-2486.2005.00925.x.
  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. 2010. A framework for community interactions under climate change. Trends Ecol Evol. 25(6):325–331. doi:10.1016/j.tree.2010.03.002.
  • Goodenough AE, Hart AG, Stafford R. 2010. Is adjustment of breeding phenology keeping pace with the need for change? Linking observed response in woodland birds to changes in temperature and selection pressure. Clim Change. 102:687–697.
  • Gosler A, Clement P, Kirwan GM. 2019. Varied Tit (Sittiparus varius). In: Del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Handbook of the birds of the world alive. Barcelona: Lynx Edicions; [accessed 2019 Apr 19]. http://www.hbw.com/species/varied-tit-sittiparus-varius.
  • Haman J, Avery M. 2019. ciTools: confidence or prediction intervals, quantiles, and probabilities for statistical models. R package version 0.5.1. https://CRAN.R-project.org/package=ciTools
  • Harrington R, Woiwod I, Sparks T. 1999. Climate change and trophic interactions. Trends Ecol Evol. 14(4):146–150. doi:10.1016/S0169-5347(99)01604-3.
  • Higuchi H, Morishita E. 1999. Population declines of tropical migratory birds in Japan. Actinia. 12:51–59.
  • Husby A, Kruuk LEB, Visser ME. 2009. Decline in the frequency and benefits of multiple brooding in Great Tits as a consequence of a changing environment. Proc R Soc B Biol Sci. 276(1663):1845–1854. doi:10.1098/rspb.2008.1937.
  • Hwang T, Song C, Vose JM, Band LE. 2011. Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landscape Ecol. 26(4):541–556. doi:10.1007/s10980-011-9580-8.
  • Im ES, Ahn JB. 2011. On the elevation dependency of present-day climate and future change over Korea from a high resolution regional climate simulation. J Meterol Soc Jpn. 89(1):89–100. doi:10.2151/jmsj.2011-106.
  • Jeong MS. 2020. The effects of climate change on the breeding ecology and phenological asynchrony of the Varied Tit (Sittiparus varius) in Korea [dissertation]. Seoul: Seoul National University.
  • Jeong MS, Choi CY, Kim HK, Lee WS. 2019. Predicting climate-driven shifts in the breeding phenology of Varied Tits (Sittiparus various) in South Korean forests. Anim Cells Syst. 23(6):422–432. doi:10.1080/19768354.2019.1675759.
  • Lee JK, Jang WS, Chung OS, Lee WS. 2016. The relationships between prey size, nestling age, provisioning rate, and elevation in the Varied Tit Parus Varius. Ornithol Sci. 15(1):29–36. doi:10.2326/osj.15.29.
  • Lenth R. 2018. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.1. https://CRAN.R-project.org/package=emmeans
  • Lindenmayer D, Cunningham S, Young A, editors. 2012. Land use intensification: effects on agriculture, biodiversity and ecological processes. Collingwood: CSIRO publishing.
  • Ma Z, Liu H, Mi Z, Zhang Z, Wang Y, Xu W, Jiang L, He JS. 2017. Climate warming reduces the temporal stability of plant community biomass production. Nat Commun. 8(1):1–7. doi:10.1038/ncomms15378.
  • Pearce-Higgins JW, Yalden DW, Whittingham MJ. 2005. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia. 143(3):470–476.
  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, et al. 2015. Elevation-dependent warming in mountain regions of the world. Nat Clim Change. 5(5):424–430.
  • Pepin N, Deng H, Zhang H, Zhang F, Kang S, Yao T. 2019. An examination of temperature trends at high elevations across the Tibetan Plateau: the use of MODIS LST to understand patterns of elevation-dependent warming. J Geophys Res Atmos. 124(11):5738–5756.
  • Porlier M, Charmantier A, Bourgault P, Perret P, Blondel J, Garant D. 2012. Variation in phenotypic plasticity and selection patterns in Blue Tit breeding time: between- and within-population comparisons: variation in plasticity among populations. J Anim Ecol. 81(5):1041–1051. doi:10.1111/j.1365-2656.2012.01996.x.
  • R Core Team. 2018. R: a language and environment for statistical computing. Version 3.5.1. Vienna: R Core Team. https://www.R-project.org/
  • Rangwala I, Miller JR. 2012. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change. 114(3):527–547. doi:10.1007/s10584-012-0419-3.
  • Reed TE, Jenouvrier S, Visser ME. 2013. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J Anim Ecol. 82(1):131–144. doi:10.1111/j.1365-2656.2012.02020.x.
  • Renner SS, Zohner CM. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst. 49(1):165–182. doi:10.1146/annurev-ecolsys-110617-062535.
  • Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop K, Hüppop O, Lehikoinen A, Lehikoinen E, Rainio K, et al. 2011. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc B Biol Sci. 278(1707):835–842. doi:10.1098/rspb.2010.1778.
  • Sanz JJ, Potti J, Potti J, Moreno J, Merino S, Frias O. 2003. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Global Change Biol. 9(3):461–472. doi:10.1046/j.1365-2486.2003.00575.x.
  • Schaper SV, Dawson A, Sharp PJ, Gienapp P, Caro SP, Visser ME. 2012. Increasing temperature, not mean temperature, is a cue for avian timing of reproduction. Am Nat. 179(2):E55–E69. doi:10.1086/663675.
  • Shiao MT, Chuang MC, Yuan HW, Wang Y. 2015. Effects of weather variation on the timing and success of breeding in two cavity-nesting species in a subtropical montane forest in Taiwan. Auk. 132(3):671–684. doi:10.1642/AUK-15-10.1.
  • Siegmund P, Abermann J, Baddour O, Canadell P, Anny C, Derksen C, Garreau A, Stephen H, Huss M, Isensee K, et al. 2019. The global climate in 2015–2019. Geneva: World Meteorological Organization.
  • Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI, et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature. 535(7611):241–245. doi:10.1038/nature18608.
  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, et al. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biol. 16(12):3304–3313. doi:10.1111/j.1365-2486.2010.02165.x.
  • Torti VM, Dunn PO. 2005. Variable effects of climate change on six species of North American birds. Oecologia. 145(3):486–495. doi:10.1007/s00442-005-0175-4.
  • Tougeron K, Damien M, Le Lann C, Brodeur J, van Baaren J. 2018. Rapid responses of winter aphid-parasitoid communities to climate warming. Front Ecol Evol. 6:173. doi:10.3389/fevo.2018.00173.
  • van Balen JH. 1973. A comparative study of the breeding ecology of the Great Tit Parus major in different habitats. Ardea. 55(1–2):1–93.
  • van Noordwijk AJ, McCleery RH, Perrins CM. 1995. Selection for the timing of Great Tit breeding in relation to caterpillar growth and temperature. J Anim Ecol. 64(4):451. doi:10.2307/5648.
  • Verhagen I, Tomotani BM, Gienapp P, Visser ME. 2020. Temperature has a causal and plastic effect on timing of breeding in a small songbird. J Exp Biol. 223(8):1–7. doi:10.1242/jeb.218784.
  • Visser ME, Adriaensen F, van Balen JH, Blondel J, Dhondt AA, van Dongen S, Du Feu C, Ivankina EV, Kerimov AB, de Laet J, et al. 2003. Variable responses to large-scale climate change in European Parus populations. Proc R Soc Lond B Biol Sci. 270(1513):367–372. doi:10.1098/rspb.2002.2244.
  • Visser ME, Both C. 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc B Biol Sci. 272(1581):2561–2569. doi:10.1098/rspb.2005.3356.
  • Visser ME, Holleman LJM, Caro SP. 2009. Temperature has a causal effect on avian timing of reproduction. Proc R Soc B Biol Sci. 276(1665):2323–2331. doi:10.1098/rspb.2009.0213.
  • Visser ME, Holleman LJM, Gienapp P. 2006. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia. 147(1):164–172. doi:10.1007/s00442-005-0299-6.
  • Vitasse Y, Signarbieux C, Fu YH. 2018. Global warming leads to more uniform spring phenology across elevations. Proc Natl Acad Sci. 115(5):1004–1008. doi:10.1073/pnas.1717342115.
  • Wang Q, Fan X, Wang M. 2014. Recent warming amplification over high elevation regions across the globe. Clim Dyn. 43(1):87–101. doi:10.1007/s00382-013-1889-3.
  • Wawrzyniak J, Kaliński A, Glądalski M, Bańbura M, Markowski M, Skwarska J, ZielińSki P, Cyżewska I, Bańbura J. 2015. Long-term variation in laying date and clutch size of the Great Tit Parus major in Central Poland: a comparison between urban parkland and deciduous forest. Ardeola. 62(2):311–322. doi:10.13157/arla.62.2.2015.311.
  • Way DA, Montgomery RA. 2015. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38(9):1725–1736. doi:10.1111/pce.12431.
  • Williams TD. 2012. Physiological adaptations for breeding in birds. Princeton (NJ): Princeton University Press. Chapter 3, Timing of breeding; p. 52–99.
  • Williams TD, Bourgeon S, Cornell A, Ferguson L, Fowler M, Fronstin RB, Love OP. 2015. Mid-winter temperatures, not spring temperatures, predict breeding phenology in the European Starling Sturnus vulgaris. R Soc Open Sci. 2(1):140301. doi:10.1098/rsos.140301.
  • Yanase K, Mizutani M, Sato T, Arakida Y, Matsui M, Takatoku K, Saiki M. 2018. Elucidation of long-term trends in reproductive characteristics of Poecile varius and Parus minor using nest-box surveys. Chubu For Res. 66:45–48. (in Japanese)
  • Yanase K, Mizutani M, Sato T, Arakida Y, Matsui M, Takatoku K, Saiki M. 2019. Investigation of reproductive traits of Poecile varius and Parus minor. Chubu For Res. 67:43–46. (in Japanese)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.