330
Views
2
CrossRef citations to date
0
Altmetric
Socioeconomics, Planning, and Management

Impact of forest type and age on shallow landslide susceptibility: a case study from the 2017 heavy rainfall in northern Kyushu, Japan

, , ORCID Icon &
Pages 389-396 | Received 21 Nov 2022, Accepted 14 Jun 2023, Published online: 26 Jun 2023

References

  • Austin PC, Stuart EA. 2015. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 34(28):3661–3679. doi: 10.1002/sim.6607.
  • Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver PO, Meurisse N, Oxbrough A, Taki H, et al. 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv. 26(13):3005–3035. doi: 10.1007/s10531-017-1453-2.
  • Brookhart MA, Wyss R, Layton JB, Stürmer T. 2013. Propensity score methods for confounding control in nonexperimental research. Circ Cardiovasc Qual Outcomes. 6(5):604–611. doi: 10.1161/CIRCOUTCOMES.113.000359.
  • Burgette L, Griffin BA, McCaffrey D 2021. Propensity scores for multiple treatments: a tutorial for the mnps function in the twang package. https://cran.r-project.org/web/packages/twang/vignettes/mnps.pdf.
  • Cefalu M, Ridgeway G, McCaffrey D, Morral A, Griffin BA, Burgette L 2021. Twang: toolkit for weighting and analysis of nonequivalent groups. https://cran.r-project.org/package=twang/.
  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J. 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena. 151:147–160. doi: 10.1016/j.catena.2016.11.032.
  • Chesnaye NC, Stel VS, Tripepi G, Dekker FW, Fu EL, Zoccali C, Jager KJ. 2022. An introduction to inverse probability of treatment weighting in observational research. Clin Kidney J. 15(1):14–20. doi: 10.1093/ckj/sfab158.
  • Chiaradia EA, Vergani C, Bischetti GB. 2016. Evaluation of the effects of three European forest types on slope stability by field and probabilistic analyses and their implications for forest management. For Ecol Manage. 370:114–129. doi: 10.1016/J.FORECO.2016.03.050.
  • Cislaghi A, Alterio E, Fogliata P, Rizzi A, Lingua E, Vacchiano G, Bischetti GB, Sitzia T. 2021. Effects of tree spacing and thinning on root reinforcement in mountain forests of the European Southern Alps. For Ecol Manage. 482:118873. doi: 10.1016/J.FORECO.2020.118873.
  • Danjo T, Ishizawa T, Kimura T. 2018. Spatial analysis of the landslide characteristics caused by heavy rainfall in the Northern Kyushu district in July, 2017 using topography, geology, and rainfall levels. J Disaster Res. 13(5):832–845. doi: 10.20965/jdr.2018.p0832.
  • Dazio E, Plinio R, Conedera M, Schwarz M. 2018. Impact of different chestnut coppice managements on root reinforcement and shallow landslide susceptibility. For Ecol Manage. 417:63–76. doi: 10.1016/J.FORECO.2018.02.031.
  • de Jesús Arce-Mojica T, Nehren U, Sudmeier-Rieux K, Miranda PJ, Anhuf D. 2019. Nature-based solutions (NbS) for reducing the risk of shallow landslides: where do we stand? Int J Disaster Risk Reduct. 41:101293. doi: 10.1016/J.IJDRR.2019.101293.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Han Z, Pham BT. 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. 17(3):641–658. doi: 10.1007/s10346-019-01286-5.
  • Fukuoka prefecture. 2022. Open data on forests in Fukuoka Prefecture. [accessed 2022 Aug 17]. https://www.pref.fukuoka.lg.jp/contents/forest-opendata.html.
  • García-Nieto AP, García-Llorente M, Iniesta-Arandia I, Martín-López B. 2013. Mapping forest ecosystem services: from providing units to beneficiaries. Ecosyst Serv. 4:126–138. doi:10.1016/J.ECOSER.2013.03.003.
  • Genet M, Kokutse N, Stokes A, Fourcaud T, Cai X, Ji J, Mickovski S. 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. For Ecol Manage. 256(8):1517–1526. doi: 10.1016/J.FORECO.2008.05.050.
  • Geological Survey of Japan. 2022. Seamless digital geological map of Japan V2 1: 200,000. [accessed 2022 Jun 16]. https://gbank.gsj.jp/seamless/index.html.
  • Gudiyangada Nachappa T, Kienberger S, Meena SR, Hölbling D, Blaschke T. 2020. Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomatics, Nat Hazards Risk. 11(1):572–600. doi: 10.1080/19475705.2020.1736190.
  • Hernán MA, Hsu J, Healy B. A second chance to get causal inference right: a classification of data science tasks. CHANCE. 2019;32(1):42–49. doi: 10.1080/09332480.2019.1579578.
  • Japan Meteorological Agency. 2022. No Title. [accessed 2022 Jan 13]. https://www.data.jma.go.jp/obd/stats/etrn/index.php.
  • Knevels R, Petschko H, Proske H, Leopold P, Maraun D, Brenning A. 2020. Event-based landslide modeling in the Styrian Basin, Austria: accounting for time-varying rainfall and land cover. Geosci. 10(6):217. doi: 10.3390/geosciences10060217.
  • Liu T, Ungar L, Kording K. 2021. Quantifying causality in data science with quasi-experiments. Nat Comput Sci. accessed 2021 Feb 24 11: 24–32. doi: 10.1038/s43588-020-00005-8.
  • Lumley T. 2016. Analysis of complex survey samples. J Stat Softw. 9(1):1–19.
  • MAFF. 2016. Investigation method of disaster risk district in the mountain. https://www.rinya.maff.go.jp/j/saigai/saigai/attach/pdf/con_1-3.pdf.
  • Masi EB, Segoni S, Tofani V. 2021. Root reinforcement in slope stability models: a review. Geosci. 11(5):212. doi: 10.3390/geosciences11050212.
  • Mccaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF. 2013. A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med. 32(19):3388–3414. doi: 10.1002/sim.5753.
  • MILT. 2022a. Digital national land information. [accessed 2022 Aug 17]. https://nlftp.mlit.go.jp/index.html.
  • MILT. 2022b. XRAIN original data download System. [accessed 2022 May 16]. https://diasjp.net/service/xrain-data/.
  • Mind’je R, Li L, Nsengiyumva JB, Mupenzi C, Nyesheja EM, Kayumba PM, Gasirabo A, Hakorimana E. 2020. Landslide susceptibility and influencing factors analysis in Rwanda. Environ Dev Sustain. 22(8):7985–8012. doi: 10.1007/s10668-019-00557-4.
  • Miyamoto A, Sano M. 2008. The influence of forest management on landscape structure in the cool-temperate forest region of central Japan. Landsc Urban Plan. 86(3–4):248–256. doi: 10.1016/J.LANDURBPLAN.2008.03.002.
  • Miyata S, Gomi T, Sidle RC, Hiraoka M, Onda Y, Yamamoto K, Nonoda T. 2019. Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: implications for hydrological connectivity. Sci Total Environ. 669:148–159. doi:10.1016/j.scitotenv.2019.02.453.
  • Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process. 5(1):3–30. doi: 10.1002/hyp.3360050103.
  • Moos C, Bebi P, Graf F, Mattli J, Rickli C, Schwarz M. 2016. How does forest structure affect root reinforcement and susceptibility to shallow landslides? Earth Surf Process Landforms. 41(7):951–960. doi: 10.1002/esp.3887.
  • Murakami W, Yasuda Y. 2018. Relationship between landslides and rainfall distribution in the torrential rain in northern Kyushu in 2017. Bull For For Prod Res Inst. 17:111–115. (in Japanese).
  • Nagaike T, Kamitani T. 1997. Factors affecting changes in a landscape structure dominated by both primary and coppice forests in theFagus crenata forest region of central Japan. J For Res. 2(4):193–198. doi: 10.1007/BF02348314.
  • Nilaweera NS, Nutalaya P. 1999. Role of tree roots in slope stabilisation. Bull Eng Geol Environ. 57(4):337–342. doi: 10.1007/s100640050056.
  • Orsi F, Ciolli M, Primmer E, Varumo L, Geneletti D. 2020. Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy. 99:104840. doi: 10.1016/J.LANDUSEPOL.2020.104840.
  • Pearl J. 2019. The seven tools of causal inference, with reflections on machine learning. Commun ACM. 62(3):54–60. doi: 10.1145/3241036.
  • Persichillo MG, Bordoni M, Meisina C. 2017. The role of land use changes in the distribution of shallow landslides. Sci Total Environ. 574:924–937. doi: 10.1016/J.SCITOTENV.2016.09.125.
  • Pourghasemi HR, Pradhan B, Gokceoglu C. 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards. 63(2):965–996. doi: 10.1007/s11069-012-0217-2.
  • Rabby YW, Li Y, Abedin J, Sabrina S. 2022. Impact of land use/land cover change on landslide susceptibility in Rangamati municipality of Rangamati district, Bangladesh. ISPRS Int J Geo-Information. 11(2):89. doi: 10.3390/ijgi11020089.
  • R Core Team. 2021. R: a language and environment for statistical computing. [accessed 2021 Jul 30]. https://www.r-project.org/.
  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees. 2007;21(4):385–402. doi: 10.1007/s00468-007-0132-4.
  • Ridgeway G, McCaffrey D, Morral A, Griffin BA, Burgette L 2017. Twang: toolkit for weighting and analysis of nonequivalent groups. https://cran.r-project.org/package=twang.
  • Roering JJ, Schmidt KM, Stock JD, Dietrich WE, Montgomery DR. 2003. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the oregon coast range. Can Geotech J. 40(2):237–253. doi: 10.1139/t02-113.
  • Rosenbaum PR, Rubin DB. 1983. The central role of the propensity score in observational studies for causal effects. Biometrika. 70(1):41–55. doi: 10.1093/biomet/70.1.41.
  • Roy J, Saha S, Arabameri A, Blaschke T, Bui DT. 2019. A novel ensemble approach for Landslide Susceptibility Mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sens. 11(23). doi: 10.3390/rs11232866.
  • Saito H, Murakami W, Daimaru H, Oguchi T. 2017. Effect of forest clear-cutting on landslide occurrences: analysis of rainfall thresholds at Mt. Ichifusa, Japan. Geomorphology. 276:1–7. doi: 10.1016/J.GEOMORPH.2016.09.024.
  • Schmaltz EM, Steger S, Glade T. 2017. The influence of forest cover on landslide occurrence explored with spatio-temporal information. Geomorphology. 290:250–264. doi: 10.1016/J.GEOMORPH.2017.04.024.
  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T. 2001. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon coast range. Can Geotech J. 38(5):995–1024. doi: 10.1139/t01-031.
  • Schwarz M, Giadrossich F, Cohen D. Modeling root reinforcement using a root-failure Weibull survival function. Hydrol Earth Syst Sci. 2013;17(11):4367–4377. https://hess.copernicus.org/articles/17/4367/2013/.
  • Shu H, Hürlimann M, Molowny-Horas R, González M, Pinyol J, Abancó C, Ma J. 2019. Relation between land cover and landslide susceptibility in Val d’Aran, Pyrenees (Spain): historical aspects, present situation and forward prediction. Sci Total Environ. 693:133557. doi:10.1016/J.SCITOTENV.2019.07.363.
  • Sidle RC. A conceptual model of changes in root cohesion in response to vegetation management. J Environ Qual. 1991;20(1):43–52. doi: 10.2134/jeq1991.00472425002000010009x.
  • Sidle RC. 1992. A theoretical model of the effects of timber harvesting on slope stability. Water Resour Res. 28(7):1897–1910. doi: 10.1029/92WR00804.
  • Veylon G, Ghestem M, Stokes A, Bernard A. 2015. Quantification of mechanical and hydric components of soil reinforcement by plant roots. Can Geotech J. 52(11):1839–1849. doi: 10.1139/cgj-2014-0090.
  • Wu W, Sidle RC. 1995. A distributed slope stability model for steep forested basins. Water Resour Res. 31(8):2097–2110. doi: 10.1029/95WR01136.
  • Yamaura Y, Lindenmayer D, Yamada Y, Gong H, Matsuura T, Mitsuda Y, Masaki T. 2019. A spatially-explicit empirical model for assessing conservation values of conifer plantations. For Ecol Manage. 444:393–404. doi: 10.1016/J.FORECO.2019.04.038.
  • Yamaura Y, Yamada Y, Matsuura T, Tamai K, Taki H, Sato T, Hashimoto S, Murakami W, Toda K, Saito H, et al. 2021. Modeling impacts of broad-scale plantation forestry on ecosystem services in the past 60 years and for the future. Ecosyst Serv. 49:101271. doi: 10.1016/J.ECOSER.2021.101271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.