1,488
Views
0
CrossRef citations to date
0
Altmetric
Socioeconomics, Planning, and Management

Predicting changes in the carbon stocks of bamboo forests in Japan from 1985 to 2005

& ORCID Icon
Pages 407-415 | Received 06 Apr 2023, Accepted 22 Jun 2023, Published online: 03 Jul 2023

References

  • Abebe S, Minale AS, Teketay D, Jayaraman D, Long TT. 2021. Biomass, carbon stock and sequestration potential of Oxytenanthera abyssinica forests in lower beles River Basin, Northwestern Ethiopia. Carbon Balance Manag. 16(1):29. doi: 10.1186/s13021-021-00192-5.
  • Al-Ghussain L. 2019. Global warming: review on driving forces and mitigation. Environ Prog Sustain. 38(1):13–21. doi: 10.1002/ep.13041.
  • Brahma BB, Nath AJ, Deb C, Sileshi GW, Sahoo UK, Das AK. 2021. A critical review of forest biomass estimation equations in India. Trees, For People. 5:100098. doi:10.1016/j.tfp.2021.100098.
  • Buckingham K, Jepson P, Wu L, Rao IVR, Jiang S, Liese W, Lou Y, Fu M. 2011. The potential of bamboo is constrained by outmoded policy frames. AMBIO. 40(5):544–548. doi: 10.1007/s13280-011-0138-4.
  • Chen X, Zhang X, Zhang Y, Booth T, He X. 2009. Changes of carbon stocks in bamboo stands in China during 100 years. For Ecol Manag. 258(7):1489–1496. doi: 10.1016/j.foreco.2009.06.051.
  • Clark LG, Londoño X, Ruiz-Sanchez E. 2015. Bamboo taxonomy and habitat. In: Liese W Köhl M, editors. The plant and its uses. Bamboo: Springer, Cham; p. 1–30. doi: 10.1007/978-3-319-14133-6_1.
  • Devi AS, Singh KS. 2021. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci Rep. 11(1):837. doi: 10.1038/s41598-020-80887-w.
  • de Wit HA, Austnes K, Hylen G, Dalsgaard L, de Wit HA. 2015. A carbon balance of Norway: terrestrial and aquatic carbon fluxes. Biogeochemistry. 123(1–2):147–173. doi: 10.1007/s10533-014-0060-5.
  • Düking R, Gielis J, Liese W. 2011. Carbon flux and carbon stock in a bamboo stand and their relevance for mitigating climate change. J Am Bamboo Soc. 24:1–7.
  • Egusa T, Kumagai T, Shiraishi N. 2020. Carbon stock in Japanese forests has been greatly underestimated. Sci Rep. 10(1):7895. doi: 10.1038/s41598-020-64851-2.
  • Fang J, Oikawa T, Kato T, Mo W, Wang Z. 2005. Biomass carbon accumulation by Japan’s forests from 1947 to 1995. Global Biogeochem Cy. 19:1–10. doi:10.1029/2004GB002253.
  • Fukuda M, Iehara T, Matsumoto M. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. For Ecol Manag. 184(1–3):1–16. doi: 10.1016/S0378-1127(03)00146-4.
  • Fukushima K, Usui N, Ogawa R, Tokuchi N. 2015. Impacts of moso bamboo (Phyllostachys pubescens) invasion on dry matter and carbon and nitrogen stocks in a broad-leaved secondary forest located in Kyoto, western Japan. Plant Spec Biol. 30(2):81–95. doi: 10.1111/1442-1984.12066.
  • He CY, Cui K, Zhang JG, Duan AG, Zeng YF. 2013. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in moso bamboo. BMC Plant Biol. 13(1):119. doi: 10.1186/1471-2229-13-119.
  • Hui B, Long T. 2019. A manual for bamboo forest biomass and carbon assessment. Beijing: International Bamboo and Rattan Organization.
  • Inoue A, Sakamoto S, Suga H, Kitazato H, Sakuta K. 2013. Construction of one-way volume table for the three major useful bamboos in Japan. J For Res. 18(4):323–334. doi: 10.1007/s10310-012-0366-x.
  • Inoue A, Sato M, Shima H. 2018. Maximum size-density relationship in bamboo forests: case study of Phyllostachys pubescens forests in Japan. For Ecol Manag. 425:138–144. doi:10.1016/j.foreco.2018.05.044.
  • Inoue A, Tateishi H, Sakuta K, Yamamoto K, Mizoue N, Kitahara F. 2012. Relationships of light environment to stand attributes in a stand of bamboo, Phyllostachys Pubescens. Ecol Eng. 38(1):135–139. doi: 10.1016/j.ecoleng.2011.09.007.
  • IPCC. 2000. Good practice guidance and uncertainty management in national greenhouse gas inventories. Geneva: Intergovernmental Panel on Climate Change.
  • Isagi Y. 1994. Carbon stock and cycling in a bamboo Phyllostachys bambusoides stand. Ecol Res. 9(1):47–55. doi: 10.1007/BF02347241.
  • Isagi Y, Kawahara T, Kamo K. 1993. Biomass and net production in a bamboo Phyllostachys bambusoides stand. Ecol Res. 8(2):123–133. doi: 10.1007/BF02348524.
  • Isagi Y, Kawahara T, Kamo K, Ito H. 1997. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol. 130(1):41–52. doi: 10.1023/A:1009711814070.
  • Isagi Y, Oda T, Fukushima K, Lian C, Yokogawa M, Kaneko S. 2016. Predominance of a single clone of the most widely distributed bamboo species Phyllostachys edulis in East Asia. J Plant Res. 129(1):21–27. doi: 10.1007/s10265-015-0766-z.
  • Kauffman JB, Donato DC 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stock in mangrove forests. Center for International Forestry Research, Bogor.
  • Kilpeläinen A, Peltola H. 2022. Carbon sequestration and storage in European forests. In: Hetemäki L, Kangas J Peltola H, editors. Forest bioeconomy and climate change. Cham: Springer International Publishing; p. 113–128. doi: 10.1007/978-3-030-99206-4_6.
  • Kobayashi K, Ohashi M, Fujihara M, Kitayama K, Onoda Y. 2023. Rhizomes play significant roles in biomass accumulation, production and carbon turnover in a stand of the tall bamboo Phyllostachys edulis. J For Res. 28(1):42–50. doi: 10.1080/13416979.2022.2090669.
  • Kuehl Y, Henley G, Lou Y. 2011. The climate change challenge and bamboo: mitigation and adaptation. Beijing: International Bamboo and Rattan Organization.
  • Lin MY, Hsieh IF, Lin PH, Laplace S, Ohashi M, Chen TH, Kume T. 2017. Moso bamboo (Phyllostachys pubescens) forests as a significant carbon sink? A case study based on 4-year measurements in central Taiwan. Ecol Res. 32(6):845–857. doi: 10.1007/s11284-017-1497-5.
  • Liu YH, Yen TM. 2021. Assessing aboveground carbon storage capacity in bamboo plantations with various species related to its affecting factors across Taiwan. For Ecol Manag. 481:118745. doi:10.1016/j.foreco.2020.118745.
  • Li P, Zhou G, Du H, Lu D, Mo L, Xu X, Shi Y, Zhou Y. 2015. Current and potential carbon stocks in moso bamboo forests in China. J Environ Manage. 156:89–96. doi:10.1016/j.jenvman.2015.03.030.
  • Lobovikov M, Paudel S, Piazza M, Ren H, Wu J. 2007. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Rome: Food and Agriculture Organization of the United Nations.
  • Manabe T, Shibata S, Hasegawa H, Ito K. 2020. Trends and issues of landscape ecological studies on range expansion of bamboo forests in Japan: perspective for sustainable use of bamboo forests. Landscape Ecol Manag. 25:119–135. (in Japanese with English summary).
  • Mao F, Li P, Zhou G, Du H, Xu X, Shi Y, Mo L, Zhou Y, Tu G. 2016. Development of the BIOME-BGC model for the simulation of managed moso bamboo forest ecosystems. J Environ Manage. 172:29–39. doi:10.1016/j.jenvman.2015.12.013.
  • Mao F, Zhou G, Li P, Du H, Xu X, Shi Y, Mo L, Zhou Y, Tu G. 2017. Optimizing selective cutting strategies for maximum carbon stocks and yield of moso bamboo forest using BIOME-BGC model. J Environ Manage. 191:126–135. doi:10.1016/j.jenvman.2017.01.016.
  • Meijaard E, Wunder S, Guariguata MR, Sheil D. 2014. What scope for certifying forest ecosystem services? Ecosyst Serv. 7:160–166. doi:10.1016/j.ecoser.2013.12.008.
  • Nath AJ, Lal R, Das AK. 2015. Managing woody bamboos for carbon farming and carbon trading. Global Ecol Conserv. 3:654–663. doi:10.1016/j.gecco.2015.03.002.
  • NIES. 2020. Land use, land use change and forestry, in: greenhouse gas inventory office of Japan and ministry of the environment, Japan. National Greenhouse Gas Inventory Report of Japan 2020, Center for Global Environmental Research, National Institute for Environmental Studies, Japan, Tsukuba.
  • Nunery JS, Keeton WS. 2010. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. For Ecol Manag. 259(8):1363–1375. doi: 10.1016/j.foreco.2009.12.029.
  • Orrego M, Ugawa S, Inoue A, Laplace S, Kume T, Koga S, Hishi T, Enoki T. 2022. Climate, soil, and plant controls on early-stage litter decomposition in Moso bamboo stands at a regional scale. Front For Glob Change. 5:921028. doi:10.3389/ffgc.2022.921028.
  • Ouyang M, Yang C, Tain D, Pan J, Chen G, Su H, Yan Z, Ji C, Tang Z, Fang J. 2022. A field-based estimation of moso bamboo forest biomass in China. For Ecol Manag. 505:119885. doi:10.1016/j.foreco.2021.119885.
  • Palmer L. 2021. How trees and forests reduce risks from climate change. Nat Clim Chang. 11(5):374–377. doi: 10.1038/s41558-021-01041-6.
  • R Core Team. 2023. R: a language and environment for statistical computing. [accessed 2023 April 6]. http://www.R-project.org.
  • Sasaki N, Kim S. 2009. Biomass carbon sinks in Japanese forests: 1966–2012. Forestry. 82(1):105–115. doi: 10.1093/forestry/cpn049.
  • Scurlock JMO, Dayton DC, Hames B. 2000. Bamboo: an overlooked biomass resources? Biomass Bioenerg. 19(4):229–244. doi: 10.1016/S0961-9534(00)00038-6.
  • Shibata S. 2003. Phyllostachys pubescens and Japanese. J Jpn Soc Reveget Tech. 28(3):406–411. (in Japanese). doi:10.7211/jjsrt.28.406.
  • Shibata S. 2010. Bamboo forest management for new effective utilization of bamboo resources. Shinrin Kagaku. 58:15–19. (in Japanese).
  • Shima H, Inoue A, Sato M. 2023. Bamboo: A mechanically optimum design in nature. In: Palombini F Nogueira F, editors. Bamboo Science and Technology. Singapore: Springer Nature Singapore; p. 1–29. doi: 10.1007/978-981-99-0015-2_1.
  • Shimono K, Katayama A, Abe H, Enoki T. 2021. Carbon and nitrogen storage of dead woody debris in an abandoned moso bamboo forest. Bull Kyushu Univ For. 102:9–14. (in Japanese with English summary).
  • Shinohara Y, Kume T, Ichihashi R, Komatsu H, Otsuki K. 2014. Moso bamboo forests in Japan: what are the effects of their area expansion on ecosystem services?. J Jpn For Soc. 96(6):351–361. (in Japanese with English summary). doi:10.4005/jjfs.96.351.
  • Song X, Peng C, Zhou G, Gu H, Li Q, Zhang C. 2016. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of moso bamboo (Phyllostachys heterocycla). Sci Rep. 6(1):25908. doi: 10.1038/srep25908.
  • Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, Wang W, Ma Z, Peng C. 2011. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev. 19(NA):418–428. doi: 10.1139/a11-015.
  • Suzuki K. 1976. Productivity of moso-chiku (Phyllostachys edulis) stands. Trans J Jpn For Soc. 87:223–224. (in Japanese).
  • Suzuki S. 2015. Chronological location analyses of giant bamboo (Phyllostachys pubescens) groves and their invasive expansion in a satoyama landscape area, western Japan. Plant Spec Biol. 30(1):63–71. doi: 10.1111/1442-1984.12067.
  • Suzuki S, Nakagoshi N. 2008. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol Res. 23(4):641–647. doi: 10.1007/s11284-007-0422-8.
  • Suzuki S, Nakagoshi N. 2011. Sustainable management of Satoyama bamboo landscapes in Japan. In: Hong S, Wu J, Kim J Nakagoshi N, editors. Landscape Ecology in Asian Cultures. Tokyo: Springer; p. 211–220. doi: 10.1007/978-4-431-87799-8_15.
  • Takano KT, Hibino K, Numata A, Oguro M, Aiba M, Shiogama H, Takayabu I, Nakashizuka T. 2017. Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5°C-4.0°C global warming. Ecol Evol. 7(23):9848–9859. doi: 10.1002/ece3.3471.
  • Torii A, Isagi Y. 1997. Range expansion of bamboo species in southern areas of Kyoto Prefecture, Japan. Jpn J Ecol. 47:31–41. (in Japanese with English summary).
  • Uchimura E. 2009. Utilization of bamboo resource into modern days. Soshinsya, Tokyo. (in Japanese).
  • Utsumi Y, Murata I, Shiiba Y, Miyajima Y, Inoue S. 2010. The traditional name and usage of plants in Okawachi area, Shiiba Village III. Lianas and Bamboos. Bull Kyushu Univ For. 91:15–18. (in Japanese).
  • Wang S, Kobayashi K, Takanashi S, Liu CP, Li DR, Chen SW, Cheng YT, Moriguchi K, Dannoura M. 2023. Estimating divergent forest carbon stocks and sinks via a knife set approach. J Environ Manage. 330:117114. doi:10.1016/j.jenvman.2022.117114.
  • Wang B, Wei WJ, Liu CJ, You WZ, Niu X, Man RZ. 2013. Biomass and carbon stock in moso bamboo forests in subtropical China: characteristics and implications. J Trop For Sci. 25:137–148.
  • Withey P, Johnston C, Guo J. 2019. Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage. Renew Sust Energ Rev. 115:109408. doi:10.1016/j.rser.2019.109408.
  • Wu W, Liu Q, Zhu Z, Shen Y. 2015. Managing bamboo for carbon sequestration, bamboo stem and bamboo shoots. Small-scale For. 14(2):233–243. doi: 10.1007/s11842-014-9284-4.
  • Xu M, Ji H, Zhuang S, Nath A. 2018a. Carbon stock of moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China. PLoS One. 13(2):e0193024. doi: 10.1371/journal.pone.0193024.
  • Xu L, Shi Y, Zhou G, Xu X, Liu E, Zhou Y, Zhang F, Li C, Fang H, Chen L. 2018b. Structural development and carbon dynamics of moso bamboo forests in Zhejiang Province, China. For Ecol Manag. 409:479–488. doi:10.1016/j.foreco.2017.11.057.
  • Yen TM. 2015. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J For Res. 20(1):1–8. doi: 10.1007/s10310-014-0455-0.
  • Yen TM. 2016. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachys pubescens). Bot Stud. 57(1):10. doi: 10.1186/s40529-016-0126-x.
  • Yen TM, Ji YJ, Lee JS. 2010. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For Ecol Manag. 260(3):339–344. doi: 10.1016/j.foreco.2010.04.021.
  • Yen TM, Lee JS. 2011. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For Ecol Manag. 261(6):995–1002. doi: 10.1016/j.foreco.2010.12.015.
  • Yen TM, Wang CT. 2013. Assessing carbon storage and carbon sequestration for natural forests, man-made forests, and bamboo forests in Taiwan. Int J Sust Dev World Ecol. 20(5):455–460. doi: 10.1080/13504509.2013.811445.
  • Yuen JQ, Fung T, Ziegler AD. 2017. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For Ecol Manag. 393:113–138. doi:10.1016/j.foreco.2017.01.017.
  • Zhang H, Zhuang S, Sun B, Ji H, Li C, Zhou S. 2014. Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter–age bivariate distribution model. Forestry. 87(5):674–682. doi: 10.1093/forestry/cpu028.
  • Zhou BZ, Fu MY, Xie JZ, Yang XS, Li ZC. 2005. Ecological functions of bamboo forest: research and application. J For Res. 16(2):143–147. doi: 10.1007/BF02857909.
  • Zhou G, Meng C, Jiang P, Xu Q. 2011. Review of carbon fixation in bamboo forests in China. Bot Rev. 77(3):262–270. doi: 10.1007/s12229-011-9082-z.