262
Views
0
CrossRef citations to date
0
Altmetric
Forest Environment

Nitrate leaching and its susceptibility in response to elevated nitrogen deposition in Japanese forests

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 81-88 | Received 05 Oct 2022, Accepted 25 Jul 2023, Published online: 06 Aug 2023

References

  • Aber JD. 1992. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol. 7(7):220–224. doi: 10.1016/0169-5347(92)90048-G.
  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems. BioScience. 48(11):921–934. doi: 10.2307/1313296.
  • Anderson DW. 1988. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry. 5(1):71–97. doi: 10.1007/BF02180318.
  • Andersson P, Berggren D, Nilsson I. 2002. Indices for nitrogen status and nitrate leaching from Norway spruce (Picea abies (L.) Karst.) stands in Sweden. For Ecol Manage. 157(1–3):39–53. doi: 10.1016/S0378-1127(00)00651-4.
  • Backer RGM, Saeed W, Seguin P, Smith DL. 2017. Root traits and nitrogen fertilizer recovery efficiency of corn grown in biochar-amended soil under greenhouse conditions. Plant Soil. 415(1–2):465–477. doi: 10.1007/s11104-017-3180-6.
  • Cahn MD, Bouldin DR, Cravo MS. 1992. Nitrate sorption in the profile of an acid soil. Plant Soil. 143(2):179–183. doi: 10.1007/BF00007871.
  • Chiwa M, Enoki T, Higashi N, Kumagai T, Otsuki K. 2013. The increased contribution of atmospheric nitrogen deposition to nitrogen cycling in a rural forested area of Kyushu, Japan. Water, Air, Soil Pollut. 224(11):1–8. doi: 10.1007/s11270-013-1763-2.
  • Chiwa M, Inoue S, Tashiro N, Ohgi D, Uehara Y, Shibata H, Kumc A. 2015. Assessing the role of forests in mitigating eutrophication downstream of pasture during spring snowmelt. Hydrol Process. 29(4):615–623. doi: 10.1002/hyp.10189.
  • Chiwa M, Maruno R, Ide JI, Miyano T, Higashi N, Otsuki K. 2010. Role of stormflow in reducing N retention in a suburban forested watershed, western Japan. J Geophys Res Biogeosci. 115(G2). doi: 10.1029/2009JG000944.
  • Chiwa M, Nakamura T. 2020. Temporal variation of air temperature, snow depth, and soil temperature at different slopes of ashoro research forest, Kyushu university. Bull Kyushu Univ For. 101:7–11.
  • Chiwa M, Saito T, Haga H, Kato H, Otsuki K, Onda Y. 2015. A nitrogen-saturated plantation of Cryptomeria japonica and Chamaecyparis obtusa in Japan is a large nonpoint nitrogen source. J Environ Qual. 44(4):1225–1232. doi: 10.2134/jeq2014.09.0401.
  • Chiwa M, Tateno R, Hishi T, Shibata H. 2019. Nitrate leaching from Japanese temperate forest ecosystems in response to elevated atmospheric N deposition. J For Res-Jpn. 24(1):1–15. doi: 10.1080/13416979.2018.1530082.
  • Christ MJ, Peterjohn WT, Cumming JR, Adams MB. 2002. Nitrification potentials and landscape, soil and vegetation characteristics in two Central Appalachian watersheds differing in NO3–export. For Ecol Manage. 159(3):145–158. doi: 10.1016/S0378-1127(00)00725-8.
  • Corre MD, Brumme R, Veldkamp E, Beese FO. 2007. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Glob Chang Biol. 13(7):1509–1527. doi: 10.1111/j.1365-2486.2007.01371.x.
  • Dise NB, Wright RF. 1995. Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manage. 71(1–2):153–161. doi: 10.1016/0378-1127(94)06092-W.
  • Eick MJ, Brady WD, Lynch CK. 1999. Charge properties and nitrate adsorption of some acid southeastern soils. J Environ Qual. 28(1):138–144. doi: 10.2134/jeq1999.00472425002800010016x.
  • Eno CF. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci Soc Am J. 24(4):277–279. doi: 10.2136/sssaj1960.03615995002400040019x.
  • Fang YT, Yoh M, Mo JM, Gundersen P, Zhou GY. 2009. Response of nitrogen leaching to nitrogen deposition in disturbed and mature forests of southern China. Pedosphere. 19(1):111–120. doi: 10.1016/S1002-0160(08)60090-9.
  • Fukuzawa K, Shibata H, Takagi K, Nomura M, Kurima N, Fukazawa T, Satoh F, Sasa K. 2006. Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan. For Ecol Manage. 225(1–3):257–261. doi: 10.1016/j.foreco.2006.01.001.
  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 320(5878):889–892. doi: 10.1126/science.1136674.
  • Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A. 1998. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manage. 101(1–3):37–55. doi: 10.1016/S0378-1127(97)00124-2.
  • Gundersen P, Schmidt IK, Raulund-Rasmussen K. 2006. Leaching of nitrate from temperate forests effects of air pollution and forest management. Environ Rev. 14(1):1–57. doi: 10.1139/a05-015.
  • Isobe K, Ise Y, Kato H, Oda T, Vincenot CE, Koba K, Tateno R, Senoo K, Ohte N. 2020. Consequences of microbial diversity in forest nitrogen cycling: diverse ammonifiers and specialized ammonia oxidizers. Isme J. 14:12–25. doi:10.1038/s41396-019-0500-2.
  • IUSS Working Group WRB, 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  • Katata G, Yamaguchi T, Watanabe M, Fukushima K, Nakayama M, Nagano H, Koarashi J, Tateno R, Kubota T. 2023. Atmospheric ammonia deposition and its role in a cool-temperate fragmented deciduous broad-leaved forest. Atmos Environ. 6:119640. doi:10.1016/j.atmosenv.2023.119640.
  • Kinjo T, Pratt PF. 1971. Nitrate adsorption: I. In some acid soils of Mexico and South America. Soil Sci Soc Am J. 35(5):722–725. doi: 10.2136/sssaj1971.03615995003500050027x.
  • Lupon A, Sabater F, Miñarro A, Bernal S. 2016. Contribution of pulses of soil nitrogen mineralization and nitrification to soil nitrogen availability in three Mediterranean forests. Eur J Soil Sci. 67(3):303–313. doi: 10.1111/ejss.12344.
  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P. 2004. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage. 196(1):7–28. doi: 10.1016/j.foreco.2004.03.033.
  • Midgley MG, Phillips RP. 2014. Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition. Biogeochemistry. 117:241–253. doi:10.1007/s10533-013-9931-4.
  • Miki N, Matsumoto T, Katou H. 2009. Relative velocity of nitrate transport as affected by adsorption in different Andosols in Hokkaido [Japan]. Japanese J Soil Sci Plant Nutr. 80:365–378.
  • Nagano H, Nakayama M, Katata G, Fukushima K, Yamaguchi T, Watanabe M, Kondo T, Atarashi-Andoh M, Kubota T, Tateno R, et al. 2021. Soil microbial community responding to moderately elevated nitrogen deposition in a Japanese cool temperate forest surrounded by fertilized grasslands. Soil Sci Plant Nutr. 67(5):606–616. doi: 10.1080/00380768.2021.1974799.
  • Nanko K, Ugawa S, Hashimoto S, Imaya A, Kobayashi M, Sakai H, Ishizuka S, Miura S, Tanaka N, Takahashi M, et al. 2014. A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma. 213:36–45. doi:10.1016/j.geoderma.2013.07.025.
  • Nanzyo M. 2007. Introduction to studies on volcanic ash soils in Japan and international collaboration. J Integrated Field Sci. 4:71–77.
  • Nishina K, Watanabe M, Koshikawa MK, Takamatsu T, Morino Y, Nagashima T, Soma K, Hayashi S. 2017. Varying sensitivity of mountainous streamwater base-flow NO3− concentrations to N deposition in the northern suburbs of Tokyo. Sci Rep. 7(1):1–9. doi: 10.1038/s41598-017-08111-w.
  • Oyanagi N, Chihara M, Toda H, Haibara K. 2002. Characteristics of carbon and nitrogen mineralization of forest soils in different slopes and vegetation. J Japanese For Soc. 84:111–119. in Japanese with English summary.
  • Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199(1):41–51. doi: 10.1111/nph.12221.
  • R Core Team. 2022. R: A language and environment for statis- tical computing. R Foundation for Statistical Computing, Vienna, Austria. [accessed 2022 November]. http://www.R-project.org/.
  • Ross DS, Shanley JB, Campbell JL, Lawrence GB, Bailey SW, Likens GE, Wemple BC, Fredriksen G, Jamison AE. 2012. Spatial patterns of soil nitrification and nitrate export from forested headwaters in the northeastern United States. J Geophys Res Biogeosci. 117(G1). doi: 10.1029/2011JG001740.
  • Shibata H, Fukuzawa K. 2010. Characteristics of nitrogen cycling processes in natural forest ecosystems in northern Hokkaido, Japan. Environ Sci. 23(4):277–283. in Japanese with English summary.
  • Shibata H, Kuboi T, Konohira E, Satoh F, Sasa K 2005. Retention processes of anthropogenic nitrogen deposition in a forest watershed in northern Japan. In Proceedings of the 3rd international nitrogen conference. Beijing: Science Press USA. 626–630.
  • Soil Survey Staff. 2014. Keys to Soil Taxonomy. twelfth ed. Washington DC: USDA-Natural Resources Conservation Service.
  • Song L, Zhang J, Müller C, Jin G. 2019. Responses of soil N transformations and N loss to three years of simulated N deposition in a temperate Korean pine plantation in northeast China Applied Soil Ecology. Appl Soil Ecol. 137:49–56. doi:10.1016/j.apsoil.2019.01.008.
  • Tani M, Okuten T, Koike M, Kuramochi K, Kondo R. 2004. Nitrate adsorption in some andisols developed under different moisture conditions. Soil Sci Plant Nutr. 50(3):439–446. doi: 10.1080/00380768.2004.10408498.
  • Tateno R, Imada S, Watanabe T, Fukuzawa K, Shibata H. 2019. Reduced snow cover changes nitrogen use in canopy and understory vegetation during the subsequent growing season. Plant Soil. 438(1–2):157–172. doi: 10.1007/s11104-019-04011-2.
  • Tietema A. 1998. Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. For Ecol Manage. 101(1–3):29–36. doi: 10.1016/S0378-1127(97)00122-9.
  • Urakawa R, Ohte N, Shibata H, Isobe K, Tateno R, Oda T, Hishi T, Fukushima K, Inagaki Y, Hirai K, et al. 2016. Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. For Ecol Manage. 361:382–396. doi:10.1016/j.foreco.2015.11.033.
  • Urakawa R, Ohte N, Shibata H, Tateno R, Hishi T, Fukushima K, Inagaki Y, Hirai K, Oda T, Oyanagi N, et al. 2015. Biogeochemical nitrogen properties of forest soils in the Japanese archipelago. Ecol Res. 30(1):1–2. doi: 10.1007/s11284-014-1212-8.
  • Vitousek PM, Reiners WA. 1975. Ecosystem succession and nutrient retention: A hypothesis. Bioscience. 25(6):376–381. doi: 10.2307/1297148.
  • Wan X, Huang Z, He Z, Yu Z, Wang M, Davis MR, Yang Y. 2015. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil. 387(1–2):103–116. doi: 10.1007/s11104-014-2277-4.
  • Watanabe T, Tateno R, Imada S, Fukuzawa K, Isobe K, Urakawa R, Oda T, Hosokawa N, Sasai T, Inagagi Y, et al. 2019. The effect of a freeze–thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest. Biogeochemistry. 142(3):319–338. doi: 10.1007/s10533-019-00537-w.
  • Williard KWJ, Dewalle DR, Edwards PJ. 2005. Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-Appalachian forested watersheds. Water Air Soil Pollut. 160(1–4):55–76. doi: 10.1007/s11270-005-3649-4.
  • Yang R, Chiwa M. 2021. Low nitrogen retention in a Japanese cedar plantation in a suburban area, western Japan. Sci Rep. 11(1):1–7. doi: 10.1038/s41598-021-84753-1.
  • Zhu WX, Wang W. 2011. Does soil organic matter variation affect the retention of 15NH4+ and 15NO3− in forest ecosystems? For Ecol Manage. 261(3):675–682. doi: 10.1016/j.foreco.2010.11.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.