199
Views
0
CrossRef citations to date
0
Altmetric
Forest Environment

Effects of soil environmental changes accompanying soil erosion on the soil prokaryotes and fungi of cool temperate forests in Southern Japan

, ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 89-102 | Received 18 Feb 2023, Accepted 21 Sep 2023, Published online: 10 Oct 2023

References

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK. 2003. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol. 41(1):271–303. doi: 10.1146/annurev.phyto.41.052002.095518.
  • Anthony MA, Frey SD, Stinson KA. 2017. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere. 8(9):e01951. doi: 10.1002/ecs2.1951.
  • Atreya K, Sharma S, Bajracharya RM, Rajbhandari NP. 2006. Applications of reduced tillage in hills of central Nepal. Soil till. Res. 88(1–2):16–29. doi: 10.1016/j.still.2005.04.003.
  • Bakker MM, Govers G, Jones RA, Rounsevell MDA. 2007. The effect of soil erosion on Europe’s crop yields. Ecosystems. 10(7):1209–1219. doi: 10.1007/s10021-007-9090-3.
  • Bastian M, Heymann S, Jacomy M. 2009. Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media. 3(1):361–362. https://ojs.aaai.org/index.php/ICWSM/article/view/13937
  • Benjamini Y, Krieger AM, Yekutieli D. 2006. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 93(3):491–507. http://www.jstor.org/stable/20441303
  • Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 6(1):90. doi: 10.1186/s40168-018-0470-z.
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 37(8):852–857. doi:10.1038/s41587-019-0209-9.
  • Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno S, Schütt B, Ferro V, et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun. 8(1):2013. doi:10.1038/s41467-017-02142-7.
  • Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, Dove NC, Fairbanks D, Gallery RE, Hart SC, et al. 2019. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio. 10(5):e01318–19. doi: 10.1128/mBio.01318-19.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 13(7):581–583. doi: 10.1038/nmeth.3869.
  • Chartier MP, Rostagno CM, Roig FA. 2009. Soil erosion rates in rangelands of northeastern patagonia: a dendrogeomorphological analysis using exposed shrub roots. Geomorphology. 106(3–4):344–351. doi: 10.1016/j.geomorph.2008.11.015.
  • Chen T, Liu YX, Huang L. 2022. ImageGP: an easy-to-use data visualization web server for scientific researchers. iMeta. 1(1):e5. doi: 10.1002/imt2.5.
  • Chen J, Wang P, Wang C, Wang X, Miao L, Liu S, Yuan Q, Sun S. 2020. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environ Microbiol. 22(3):832–849. doi: 10.1111/1462-2920.14795.
  • Chen Y, Xu Z, Feng K, Yang G, Fu W, Chen B. 2020. Nitrogen and water addition regulate soil fungal diversity and co-occurrence networks. J Soils Sediments. 20(8):3192–3203. doi: 10.1007/s11368-020-02629-9.
  • Cho SJ, Kim MH, Lee YO. 2016. Effect of pH on soil bacterial diversity. j ecology environ. 40(1):10. doi: 10.1186/s41610-016-0004-1.
  • Chu L, Ishikawa Y, Shiraki K, Wakahara T, Uchiyama Y. 2010. Relationship between forest floor cover percentage and soil erosion rate on the forest floor with an impoverished understory grazed by deer (Cervus Nippon) at Doudaira, Tanzawa mountains [In Japanese]. J Jpn For Soc. 92(5):261–268. doi: 10.4005/jjfs.92.261.
  • Colacicco D, Osborn T, Alt K. 1989. Economic damage from soil erosion. J Soil Water Conserv. 44:35–39.
  • Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Sci. 199(4335):1302–1310. doi: 10.1126/science.199.4335.1302.
  • Csardi G, Nepusz T. 2006. The igraph software package for complex network research. Int J Complex Syst. 1695:1–9.
  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 7(1):10541. doi: 10.1038/ncomms10541.
  • de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, et al. 2018. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 9(1):3033. doi:10.1038/s41467-018-05516-7.
  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille M. 2020. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 38(6):685–688. doi: 10.1038/s41587-020-0548-6.
  • Du L, Guo S, Gao X, Li W, Li X, Hou F, Wang R. 2021. Divergent responses of soil fungal communities to soil erosion and deposition as evidenced in topsoil and subsoil. Sci Total Environ. 755:142616. doi: 10.1016/j.scitotenv.2020.142616.
  • Edmondson JL, Davies ZG, McHugh N, Gaston KJ, Leake JR. 2012. Organic carbon hidden in urban ecosystems. Sci Rep. 2(1):963. doi: 10.1038/srep00963.
  • Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 103(3):626–631. doi: 10.1073/pnas.0507535103.
  • Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. 2018. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology. 99(3):690–699. doi: 10.1002/ecy.2142.
  • Gachene CKK, Mbuvi JP, Jarvis NJ, Linner H. 1997. Soil erosion effects on soil properties in a highland area of central Kenya. Soil Sci Soc Am J. 61(2):559–564. doi: 10.2136/sssaj1997.03615995006100020027x.
  • Gao C, Xu L, Montoya L, Madera M, Hollingsworth J, Chen L, Purdom E, Singan V, Vogel J, Hutmacher RB, et al. 2022. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat Commun. 13(1):3867. doi:10.1038/s41467-022-31343-y.
  • Gregorich EG, Greer KJ, Anderson DW, Liang BC. 1998. Carbon distribution and losses: erosion and deposition effects. Soil Till Res. 47(3–4):291–302. doi: 10.1016/S0167-1987(98)00117-2.
  • Guerra A. 1994. The effect of organic matter content on soil erosion in simulated rainfall experiments in W. Sussex, UK. Soil Use Manag. 10(2):60–64. doi: 10.1111/j.1475-2743.1994.tb00460.x.
  • Hannon G, 2009. FASTX-Toolkit v.0.0.14. Cold Spring Harbor Laboratory, Long Island. http://hannonlab.cshl.edu/fastx_toolkit/.
  • Hao J, Chai YN, Lopes LD, Ordóñez RA, Wright EE, Archontoulis S, Schachtman DP. 2020. The effects of soil depth on the structure of microbial communities in agricultural soils in Iowa, USA. Appl Environ Microb. 87:e02673–20. Advance online publication. doi:10.1128/AEM.02673-20.
  • Hattori S, Abe T, Kobayashi C, Tamai K. 1992. Effect of forest floor coverage on reduction of soil erosion in hinoki plantations [in Japanese]. Bull For For Prod Res Inst. 362:1–34.
  • Hobbie EA, Horton TR. 2007. Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition. New Phytol. 173(3):447–449. doi: 10.1111/j.1469-8137.2007.01984.x.
  • Ho A, Di Lonardo DP, Bodelier PL. 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 93:fix006. doi: 10.1093/femsec/fix006.10.1093/femsec/fix006.
  • Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF. 2013. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 1(1):22. doi: 10.1186/2049-2618-1-22.
  • Hu W, Ran J, Dong L, Du Q, Ji M, Yao S, Sun Y, Gong C, Hou Q, Gong H, et al. 2021. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat Commun. 12(1):5350. doi:10.1038/s41467-021-25641-0.
  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3(4):442–453. doi: 10.1038/ismej.2008.127.
  • Joshi NA, Fass JN, 2011. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle.
  • Joshi G, Negi GCS. 2015. Physico-chemical properties along soil profiles of two dominant forest types in Western Himalaya. Curr Sci. 109:798–803. http://www.jstor.org/stable/24905743.
  • Katayama A, Oyamada M, Abe H, Uemori K, Hishi T. 2023. Soil erosion decreases soil microbial respiration in Japanese beech forests with understory vegetation lost by deer. J For Res-Jpn. in press. 1–8. doi: 10.1080/13416979.2023.2235499.
  • Kolde R, 2019. Pheatmap: pretty heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap
  • Koner S, Chen JS, Hsu BM, Rathod J, Huang SW, Chien HY, Hussain B, Chan M. 2022. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for biolog EcoPlate-based biostimulation strategy. J Hazard Mater. 424:127266. doi: 10.1016/j.jhazmat.2021.127266.
  • Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SC, Novak PJ. 2012. Natural niche for organohalide-respiring Chloroflexi. Appl Environ Microb. 78(2):393–401. doi: 10.1128/AEM.06510-11.
  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. J Stat Softw. 82(13):1–26. doi: 10.18637/jss.v082.i13.
  • Lal R, Pimentel D. 2008. Soil erosion: a carbon sink or source? Sci. 319(5866):1040–1042. doi: 10.1126/science.319.5866.1040.
  • Lindahl BD, Kyaschenko J, Varenius K, Clemmensen KE, Dahlberg A, Karltun E, Stendahl J, Fukami T. 2021. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol Lett. 24(7):1341–1351. doi: 10.1111/ele.13746.
  • Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 12(5):315–330. doi: 10.1007/s13238-020-00724-8.
  • Liu T, Wu X, Li H, Alharbi H, Wang J, Dang P, Chen X, Kuzyakov Y, Yan W. 2020. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. For Ecol Manage. 477:118473. doi: 10.1016/j.foreco.2020.118473.
  • Li Z, Xiao H, Tang Z, Huang J, Nie X, Huang B, Ma W, Lu Y, Zeng G. 2015. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. Eur J Soil Biol. 71:37–44. doi: 10.1016/j.ejsobi.2015.10.003.
  • Li H, Zhu H, Liang C, Wei X, Yao Y. 2022. Soil erosion significantly decreases aggregate-associated OC and N in agricultural soils of Northeast China. Agr Ecosyst Environ. 323:107677. doi: 10.1016/j.agee.2021.107677.
  • Li H, Zhu H, Wei X, Liu B, Shao M. 2021. Soil erosion leads to degradation of hydraulic properties in the agricultural region of Northeast China. Agr Ecosyst Environ. 314:107388. doi: 10.1016/j.agee.2021.107388.
  • Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27(21):2957–2963. doi: 10.1093/bioinformatics/btr507.
  • Miura S, Tokida K. 2009. Management strategy of sika deer based on sensitivity analysis. In: McCullough D, Kaji K Takatsuki S (editors), Sika deer: biology and management of native and introduced populations. Tokyo, Japan: Springer; pp. 453–472. doi:10.1007/978-4-431-09429-6_32.
  • Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, Morin E, Andreopoulos B, Barry KW, Bonito G, et al. 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun. 11(1):5125. doi:10.1038/s41467-020-18795-w.
  • Morrien E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buee M, Dimmers W, et al. 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun. 8(1):14349. doi:10.1038/ncomms14349.
  • Nakayama M, Imamura S, Taniguchi T, Tateno R. 2019. Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil? For Ecol Manag. 446:238–250. doi: 10.1016/j.foreco.2019.05.042.
  • Nakayama M, Imamura S, Tatsumi C, Taniguchi T, Tateno R. 2021. Microbial functions and soil nitrogen mineralization processes in the soil of a cool temperate forest in northern Japan. Biogeochemistry. 155(3):359–379. doi: 10.1007/s10533-021-00830-7.
  • Nanko K, Hotta N, Suzuki M. 2006. Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J Hydrol. 329(3–4):422–431. doi: 10.1016/j.jhydrol.2006.02.036.
  • Nash JM, Diggs FM, Yanai RD. 2022. Length and colonization rates of roots associated with arbuscular or ectomycorrhizal fungi decline differentially with depth in two northern hardwood forests. Mycorrhiza. 32(2):213–219. doi: 10.1007/s00572-022-01071-8.
  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. Funguild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20:241–248. doi: 10.1016/j.funeco.2015.06.006.
  • Ohashi H, Hoshino Y, Oono K. 2007. Long-term changes in the species composition of plant communities caused by the population growth of sika deer (Cervus nippon) in Okutama, Tokyo. Veg Sci. 24:123–151.
  • Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, et al., 2022. Vegan: Community Ecology Package. R Package Version 2.6-2. https://CRAN.R-project.org/package=vegan
  • Osburn ED, McBride SG, Aylward FO, Badgley BD, Strahm BD, Knoepp JD, Barrett JE. 2019. Soil bacterial and fungal communities exhibit distinct long-term responses to disturbance in temperate forests. Front Microbiol. 10:2872. doi: 10.3389/fmicb.2019.02872.
  • Osterkamp WR, Hupp CR, Stoffel M. 2012. The interactions between vegetation and erosion: new directions for research at the interface of ecology and geomorphology. Earth Surf Process Landforms. 37(1):23–36. doi: 10.1002/esp.2173.
  • Peschel S, Müller CL, von Mutius E, Boulesteix AL, Depner M. 2021. NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform. 22(4):bbaa290. doi: 10.1093/bib/bbaa290.
  • Pohlert T, 2014.PMCMR: the pairwise multiple comparison of mean ranks package. R package version. https://CRAN.R-project.org/package=PMCMR
  • Pohlert T, 2022. Pmcmrplus: calculate pairwise multiple comparisons of mean rank sums extended. R package version 1.9.6. https://CRAN.R-project.org/package=PMCMRplus
  • Qiu L, Zhang Q, Zhu H, Reich PB, Banerjee S, van der Heijden M, Sadowsky MJ, Ishii S, Jia X, Shao M, et al. 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 15(8):2474–2489. doi:10.1038/s41396-021-00913-1.
  • Quinton JN, Govers G, Van Oost K, Bardgett RD. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci. 3(5):311–314. doi: 10.1038/ngeo838.
  • Ren N, Wang Y, Ye Y, Zhao Y, Huang Y, Fu W, Chu X, 2020. Effects of continuous nitrogen fertilizer application on the diversity and composition of rhizosphere soil bacteria. Frontiers in microbiology 11, 1948. 10.3389/fmicb.2020.01948
  • Revelle WR, 2017. Psych: procedures for personality and psychological Research. R package version 2.1.9. https://CRAN.R-project.org/package=psych
  • Ritter CD, Forster D, Azevedo J, Antonelli A, Nilsson RH, Trujillo ME, Dunthorn M. 2021. Assessing biotic and abiotic interactions of microorganisms in amazonia through co-occurrence networks and DNA metabarcoding. Microb Ecol. 82(3):746–760. doi: 10.1007/s00248-021-01719-6.
  • Santillan E, Seshan H, Constancias F, Drautz-Moses DI, Wuertz S. 2019. Frequency of disturbance alters diversity, function, and underlying assembly mechanisms of complex bacterial communities. npj Biofilm Microbio. 5(1):8. doi: 10.1038/s41522-019-0079-4.
  • Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I, Culham C, Eloe-Fadrosh EA, Ivanova N, Malmstrom RR, Grasby SE, et al. 2020. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environ Microbiol. 22(8):3143–3157. doi:10.1111/1462-2920.15054.
  • Snelder DJ, Bryan RB. 1995. The use of rainfall simulation tests to assess the influence of vegetation density on soil loss on degraded rangelands in the Baringo district, Kenya. Catena. 25(1–4):105–116. doi: 10.1016/0341-8162(95)00003-B.
  • Toju H, Tanabe AS, Yamamoto S, Sato H, Lespinet O. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PloS One. 7(7):e40863. doi: 10.1371/journal.pone.0040863.
  • Uroz S, Ioannidis P, Lengelle J, Cébron A, Morin E, Buée M, Martin F, Gilbert JA. 2013. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PloS One. 8(2):e55929. doi: 10.1371/journal.pone.0055929.
  • Wagg C, Bender SF, Widmer F, van der Heijden MG. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 111(14):5266–5270. doi: 10.1073/pnas.1320054111.
  • Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden M. 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 10(1):4841. doi: 10.1038/s41467-019-12798-y.
  • Wang CY, Zhou X, Guo D, Zhao JH, Yan L, Feng GZ, Gao Q, Yu H, Zhao LP. 2019. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 69(13):1461–1473. doi: 10.1007/s13213-019-01529-9.
  • Wei T, Simko V, 2021. Corrplot: visualization of a correlation matrix. R package version 0.92. https://github.com/taiyun/corrplot.
  • Wickham H, 2016. ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org
  • Yang W, Cai X, Wang Y, Diao L, Xia L, An S, Luo Y, Cheng X. 2022. Increased soil bacterial abundance but decreased bacterial diversity and shifted bacterial community composition following secondary succession of old-field. Forests. 13(10):1628. doi: 10.3390/f13101628.
  • Yao X, Yu K, Wang G, Deng Y, Lai Z, Chen Y, Jiang Y, Liu J. 2019. Effects of soil erosion and reforestation on soil respiration, organic carbon and nitrogen stocks in an eroded area of Southern China. Sci Total Environ. 683:98–108. doi: 10.1016/j.scitotenv.2019.05.221.
  • Zhang K, Adams JM, Shi Y, Yang T, Sun R, He D, Ni Y, Chu H. 2017. Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environ Microbiol. 19(9):3649–3659. doi: 10.1111/1462-2920.13865.
  • Zhang Y, Biswas A, Adamchuk VI. 2017. Implementation of a sigmoid depth function to describe change of soil pH with depth. Geoderma. 289:1–10. doi: 10.1016/j.geoderma.2016.11.022.
  • Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ. 2014. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China sea. Mol Ecol. 23(9):2260–2274. doi: 10.1111/mec.12739.
  • Zhao J, Wang X, Shao Y, Xu G, Fu S. 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biol Biochem. 43(5):954–960. doi: 10.1016/j.soilbio.2011.01.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.