961
Views
1
CrossRef citations to date
0
Altmetric
Silviculture and Plant Sciences

Haplotype-resolved de novo genome assemblies of four coniferous tree species

ORCID Icon, , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 151-157 | Received 05 Jun 2023, Accepted 01 Oct 2023, Published online: 16 Oct 2023

References

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2013. GenBank. Nucleic Acids Research. 41(D1):D36–42. doi: 10.1093/nar/gks1195.
  • Bewg WP, Ci D, Tsai C-J. 2018. Genome editing in trees: from multiple repair pathways to long-term stability. Front Plant Sci. 9:1732. doi: 10.3389/fpls.2018.01732.
  • Buchfink B, Reuter K, Drost H-G. 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 18(4):366–368. doi: 10.1038/s41592-021-01101-x.
  • Burdon RD, Wilcox PL. 2011. Integration of molecular markers in breeding. In: Plomion C, Bousquet J, and Kole C, editors. Genetics, genomics and breeding of conifers. Boca Raton, FL, USA: CRC Press; p. 47.
  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, et al. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals Of The Missouri Botanical Garden. 80(3):528–580. doi:10.2307/2399846.
  • Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 18(2):170–175. doi: 10.1038/s41592-020-01056-5.
  • FAO. 2020. Global forest resources assessment 2020. Rome, Italy: FAO.
  • Forestry Agency. 2022. Annual report on Forest and Forestry in Japan. In: Annual Report Group, editor. Ministry of agriculture, forestry and fisheries. Japan; p. 1–50.
  • Fujisawa Y. 2017. The future of forestry and Chinese fir. Forest Genet Tree Breed. 6:132–136.
  • Goralogia GS, Redick TP, Strauss SH. 2021. Gene editing in tree and clonal crops: progress and challenges. In Vitro Cell Dev Biol -Plant. 57(4):683–699. doi: 10.1007/s11627-021-10197-x.
  • Grattapaglia D. 2022. Twelve years into genomic selection in Forest trees: climbing the slope of enlightenment of marker assisted tree breeding. Forests. 13(10):1554. doi: 10.3390/f13101554.
  • Hon T, Mars K, Young G, Tsai Y-C, Karalius JW, Landolin JM, Maurer N, Kudrna D, Hardigan MA, Steiner CC, et al. 2020. Highly accurate long-read HiFi sequencing data for five complex genomes. Sci Data. 7(1):1–11. doi:10.1038/s41597-020-00743-4.
  • Huang H-H, Xu L-L, Tong Z-K, Lin E-P, Liu Q-P, Cheng L-J, Zhu M-Y. 2012. De Novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. Bmc Genom. 13(1):648. doi: 10.1186/1471-2164-13-648.
  • Kurinobu S. 2005. Forest tree breeding for Japanese larch. Eurasian J For Res. 8:127–137.
  • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nat Methods. 9(4):357–359. doi: 10.1038/nmeth.1923.
  • Lebedev VG, Lebedeva TN, Chernodubov AI, Shestibratov KA. 2020. Genomic selection for Forest tree improvement: methods, achievements and perspectives. Forests. 11(11):1190. doi: 10.3390/f11111190.
  • Li H, Birol I. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34(18):3094–3100. doi: 10.1093/bioinformatics/bty191.
  • Liu B, Shi Y, Yuan J, Hu X, Zhang H, Li N, Li Z, Chen Y, Mu D, Fan W. 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv:1308.2012. doi: 10.48550/arXiv.1308.2012.
  • Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 27(6):764–770. doi: 10.1093/bioinformatics/btr011.
  • Mishima K, Hirakawa H, Iki T, Fukuda Y, Hirao T, Tamura A, Takahashi M. 2022. Comprehensive collection of genes and comparative analysis of full-length transcriptome sequences from Japanese larch (Larix kaempferi) and kuril larch (Larix gmelinii var. japonica). BMC Plant Biol. 22(1):470. doi: 10.1186/s12870-022-03862-9.
  • Mishima K, Hirao T, Tsubomura M, Tamura M, Kurita M, Nose M, Hanaoka S, Takahashi M, Watanabe A. 2018. Identification of novel putative causative genes and genetic marker for male sterility in Japanese cedar (Cryptomeria japonica D.Don). Bmc Genom. 19(1):277. doi: 10.1186/s12864-018-4581-5.
  • Muranty H, Jorge V, Bastien C, Lepoittevin C, Bouffier L, Sanchez L. 2014. Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes. 10(6):1491–1510. doi: 10.1007/s11295-014-0790-5.
  • Neale DB, Kremer A. 2011. Forest tree genomics: growing resources and applications. Nat Rev Genet. 12(2):111–122. doi: 10.1038/nrg2931.
  • Neale DB, Wheeler NC. 2019. Gene and genome sequencing in conifers: modern Era. In: Neale D Wheeler N, editors. The conifers: genomes, variation and evolution. Cham: Springer International Publishing; pp. 43–60.
  • Ohri D. 2021. Variation and evolution of genome size in gymnosperms. Silvae Genet. 70(1):156–169. doi: 10.2478/sg-2021-0013.
  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31(19):3210–3212. doi: 10.1093/bioinformatics/btv351.
  • Takahashi M, Miura M, Fukatsu E, Hiraoka Y, Kurita M. 2023. Research and project activities for breeding of Cryptomeria japonica D. Don in Japan. J Forest Res. 28(2):83–97. doi: 10.1080/13416979.2023.2172794.
  • Tsumura Y, Matsumoto A, Tani N, Ujino-Ihara T, Kado T, Iwata H, Uchida K. 2007. Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation. Heredity. 99(2):161–172. doi: 10.1038/sj.hdy.6800978.
  • Ujino-Ihara T, Kanamori H, Yamane H, Taguchi Y, Namiki N, Mukai Y, Yoshimura K, Tsumura Y. 2005. Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Mol Biol. 59(6):895–907. doi: 10.1007/s11103-005-2080-y.
  • Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. 2022. Evolution of complex genome architecture in gymnosperms. Gigascience. 11:giac078. doi: 10.1093/gigascience/giac078.