1,575
Views
10
CrossRef citations to date
0
Altmetric
Genetic Resources Evaluation

Effects of yield-related QTLs SPIKE and GPS in two indica rice genetic backgrounds

, , , , , & show all
Pages 467-476 | Received 27 Jan 2017, Accepted 02 Sep 2017, Published online: 12 Oct 2017

References

  • De Datta, S. K., Tauro, A. C., & Balaoing, S. N. (1968). Effect of plant type and nitrogen level on the growth characteristics and grain yield of indica rice in the tropics. Agronomy Journal, 60, 643–647.10.2134/agronj1968.00021962006000060017x
  • Dingkuhn, M., Laza, R. C., Kumar, U., Mendez, K. S., Collard, B., Jagadish, K., … Sow, A. (2015). Improving yield potential of tropical rice: Achieved levels and perspectives through improved ideotypes. Field Crops Research, 182, 43–59.10.1016/j.fcr.2015.05.025
  • Fujita, D., Trijatmiko, K. R., Tagle, A. G., Sapasap, M. V., Koide, Y., Sasaki, K., … Kobayashi, N. (2013). NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110, 20431–20436.10.1073/pnas.1310790110
  • Imbe, T., Akama, Y., Nakane, A., Hata, T., Ise, K., Ando, I., … Koga, Y. (2004). Development of a multipurpose high-yielding rice variety ‘Takanari’. Bulletin of the National Institute of Crop Science, 5, 35–51. In Japanese with English summary.
  • Khush, G. S. (2001). Green revolution: The way forward. Nature Reviews Genetics, 2, 815–822.10.1038/35093585
  • Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J., & Khush, G. S. (1999). Yield potential trends of tropical rice since the release of IR 8 and the challenge of increasing rice yield potential. Crop Science, 39, 1552–1559.10.2135/cropsci1999.3961552x
  • Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108, 32–38.10.1016/j.fcr.2008.04.001
  • Peng, S., Laza, R. C., Visperas, R. M., Sanico, A. L., Cassman, K. G., & Khush, G. S. (2000). Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Science, 40, 307–314.10.2135/cropsci2000.402307x
  • Qi, J., Qian, Q., Bu, Q., Li, S., Chen, Q., Sun, J., … Li, C. (2008). Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiology, 147, 1947–1959.10.1104/pp.108.118778
  • Taguchi-Shiobara, F., Ota, T., Ebana, K., Ookawa, T., Yamasaki, M., Tanabata, T., … Yano, M. (2015). Natural variation in the flag leaf morphology of rice due to a mutation of the narrow leaf 1 gene in Oryza sativa L. Genetics, 201, 795–808.10.1534/genetics.115.181040
  • Takai, T., Adachi, S., Taguchi-Shiobara, F., Sanoh-Arai, Y., Iwasawa, N., Yoshinaga, S., … Yamamoto, T. (2013). A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Scientific Reports, 3, 2149.10.1038/srep02149
  • Takai, T., Ikka, T., Kondo, K., Nonoue, Y., Ono, N., Arai-Sanoh, Y., … Yamamoto, T. (2014). Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines. BMC Plant Biology, 14, 295.10.1186/s12870-014-0295-2
  • Takai, T., Matsuura, S., Nishio, T., Ohsumi, A., Shiraiwa, T., & Horie, T. (2006). Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crops Research, 96, 328–335.10.1016/j.fcr.2005.08.001
  • Takai, T., Yano, M., & Yamamoto, T. (2009). Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice. Field Crops Research, 115, 165–170.
  • Takeuchi, Y., Hori, K., Suzuki, K., Nonoue, Y., Takemoto-Kuno, Y., Maeda, H. … Ando, I. (2008). Major QTLs for eating quality of an elite Japanese rice cultivar, Koshihikari, on the short arm of chromosome 3. Breeding Science, 58, 437–445.10.1270/jsbbs.58.437
  • Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.10.1126/science.1183700
  • The 3000 rice genomes project. (2014). The 3000 rice genomes project. Gigascience, 3, 7.
  • Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62, 2485–2494.10.1093/jxb/erq429