1,032
Views
4
CrossRef citations to date
0
Altmetric
Crop Physiology

Overexpression of CO2-responsive CCT protein, a key regulator of starch synthesis strikingly increases the glucose yield from rice straw for bioethanol production

ORCID Icon, , , & ORCID Icon
Pages 441-447 | Received 18 Jul 2017, Accepted 02 Oct 2017, Published online: 20 Oct 2017

References

  • Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–371.
  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861.10.1016/j.biortech.2009.11.093
  • Arai-Sanoh, Y., Ida, M., Zhao, R., Yoshinaga, S., Takai, T., Ishimaru, T., … Kondo, M. (2011). Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, & sugar cane. Bioscience, Biotechnology, and Biochemistry, 75, 1104–1112.10.1271/bbb.110009
  • Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., … Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101, 4767–4774.10.1016/j.biortech.2009.10.079
  • Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., Rodriguez, M., Jr, … Wang, Z.Y. (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences, 108, 3803–3808.10.1073/pnas.1100310108
  • Goda, T., Teramura, H., Suehiro, M., Kanamaru, K., Kawaguchi, H., Ogino, C., … Yamasaki, M. (2016). Natural variation in the glucose content of dilute sulfuric acid-pretreated rice straw liquid hydrolysates: Implications for bioethanol production. Bioscience, Biotechnology, and Biochemistry, 80, 863–869.10.1080/09168451.2015.1136882
  • Hasunuma, T., Sanda, T., Yamada, R., Yoshimura, K., Ishii, J., & Kondo, A. (2011). Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories, 10, 2.10.1186/1475-2859-10-2
  • Hattori, T., & Morita, S. (2010). Energy crops for sustainable bioethanol production; which, where and how? Plant Production Science, 13, 221–234.10.1626/pps.13.221
  • Hsu, T. C., Guo, G. L., Chen, W. H., & Hwang, W. S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101, 4907–4913.10.1016/j.biortech.2009.10.009
  • Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass & Bioenergy, 26, 361–375.10.1016/j.biombioe.2003.08.002
  • Matsuda, F., Yamasaki, M., Hasunuma, T., Ogino, C., & Kondo, A. (2011). Variation in biomass properties among rice diverse cultivars. Bioscience, Biotechnology, and Biochemistry, 75, 1603–1605.10.1271/bbb.110082
  • Matsushita, K., Iida, S., Ideta, O., Sunohara, Y., Maeda, H., Tamura, Y., … Takakuwa, M. (2011). ‘Tachisuzuka’, a new rice cultivar with high straw yield and high sugar content for whole-crop silage use. Breeding Science, 61, 86–92.10.1270/jsbbs.61.86
  • Morita, R., Sugino, M., Hatanaka, T., Misoo, S., & Fukayama, H. (2015). CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiology, 167, 1321–1331.10.1104/pp.15.00021
  • Morita, R., Inoue, K., Ikeda, K., Hatanaka, T., Misoo, S., & Fukayama, H. (2016). Starch content in leaf sheath controlled by CO2-responsive CCT protein is a potential determinant of photosynthetic capacity in rice. Plant and Cell Physiology, 57, 2334–2341.10.1093/pcp/pcw142
  • Ookawa, T., Yasuda, K., Kato, H., Sakai, M., Seto, M., Sunaga, K., … Hirasawa, T. (2010). Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar. Plant Production Science, 13, 58–66.10.1626/pps.13.58
  • Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37, 19–27.10.1016/j.renene.2011.06.045
  • Sluiter, A., Hames, B., R. Ruiz, Scarlata, C., Sluiter, J. & Templeton, D. (2011). Determination of structural carbohydrates and lignin in biomass. Golden: National Renewable Energy Laboratory, Midwest Research Institute, Contract No. DE-AC36-99-GO10337.
  • Teramoto, Y., Lee, S. H., & Endo, T. (2008). Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 99, 8856–8863.10.1016/j.biortech.2008.04.049
  • Teramura, H., Oshima, T., Matsuda, F., Sasaki, K., Ogino, C., Yamasaki, M., & Kondo, A. (2013). Glucose content in the liquid hydrolysate after dilute acid pretreatment is affected by the starch content in rice straw. Bioresource Technology, 149, 520–524.10.1016/j.biortech.2013.09.109
  • Teramura, H., Sasaki, K., Oshima, T., Aikawa, S., Matsuda, F., Okamoto, M., … Kondo, A. (2015). Changes in lignin and polysaccharide components in 13 cultivars of rice straw following dilute acid pretreatment as studied by solution-state 2D 1H-13C NMR. PLoS ONE, 10, e0128417.10.1371/journal.pone.0128417
  • Teramura, H., Sasaki, K., Oshima, T., Matsuda, F., Okamoto, M., Shirai, T., … Kondo, A. (2016). Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnology for Biofuels, 9, 1403.10.1186/s13068-016-0427-z
  • Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., & Carpita, N. C. (2007). Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Science, 47, S142–S153.
  • Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 56, 17–34.10.1007/s002530100624