2,600
Views
12
CrossRef citations to date
0
Altmetric
Crop Physiology

Variations in physiological, biochemical, and structural traits of photosynthesis and resource use efficiency in maize and teosintes (NADP-ME-type C4)

&
Pages 448-458 | Received 26 Jul 2017, Accepted 24 Oct 2017, Published online: 09 Nov 2017

References

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplast: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15. doi:10.1104/pp.24.1.1
  • Arrivault, S., Obata, T., Szecówka, M., Mengin, V., Guenther, M., Hoehne, M., … Stitt, M. (2017). Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation. Journal of Experimental Botany, 68, 283–298. doi:10.1093/jxb/erw414
  • Baer, G. R., & Schrader, L. E. (1985). Relationships between CO2 exchange rates and activities of pyruvate, Pi dikinase and ribulose bisphosphate carboxylase, chlorophyll concentration, and cell volume in maize leaves. Plant Physiology, 77, 612–616. doi:10.1104/pp.77.3.612
  • Bellasio, C., & Griffiths, H. (2014). The operation of two decarboxylases, transamination, and partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway. Plant Physiology, 164, 466–480. doi:10.1104/pp.113.228221
  • Bird, R. M. C. K. (2000). A remarkable new teosinte from Nicaragua: Growth and treatment of progeny. Maize Genetic Cooperation Newsletter, 74, 58–59 . Retrieved from https://www.cabdirect.org/cabdirect/abstract/20001613170
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3
  • Brown, R. H. (1977). A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Science, 18, 93–98. doi:10.2135/cropsci1978.0011183X001800010025x
  • Brown, R. H. (1999). Agronomic implications of C4 photosynthesis. In R. F. Sage & R. K. Monson (Eds.), C4 Plant Biology (pp. 473–507). San Diego, CA: Academic Press.10.1016/B978-012614440-6/50015-X
  • Büssis, D., von Groll, U., Fisahn, J., & Altmann, T. (2006). Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Functional Plant Biology, 33, 1037–1043. doi:10.1071/FP06078
  • Carpita, N. C., & McCann, M. C. (2008). Maize and sorghum: Genetic resources for bioenergy grasses. Trends in Plant Science, 13, 415–420. doi:10.1016/j.tplants.2008.06.002
  • Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., & Farquhar, G. D. (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytologist, 200, 950–965. doi:10.1111/nph.12423
  • Crosbie, T. M., Mock, J. J., & Pearce, R. B. (1977). Variability and selection advance for photosynthesis in Iowa stiff stalk synthetic maize population. Crop Science, 17, 511–514. doi:10.2135/cropsci1977.0011183X001700040007x
  • Dengler, N. G., Dengler, R. E., Donnelly, P. M., & Hattersley, P. W. (1994). Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): Bundle sheath and mesophyll surface area relationships. Annals of Botany, 73, 241–255. doi:10.1006/anbo.1994.1029
  • Dow, G. L., Bergmann, D. C., & Berry, J. A. (2014). An integrated model of stomatal development and leaf physiology. New Phytologist, 201, 1218–1226. doi:10.1111/nph.12608
  • Duncan, W. G., & Hesketh, J. D. (1968). Net photosynthetic rates, relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperatures. Crop Science, 8, 670–674. doi:10.2135/cropsci1968.0011183X000800060009x
  • Evans, J. R. (2013). Improving photosynthesis. Plant Physiology, 162, 1780–1793. doi:10.1104/pp.113.219006
  • Farquhar, G. D., & Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11, 539–552. doi:10.1071/PP9840539
  • Fernandez, M. G. S., Strand, K., Hamblin, M. T., Westgate, M., Heaton, E., & Kresovich, S. (2015). Genetic analysis and phenotypic characterization of leaf photosynthetic capacity in a sorghum (Sorghum spp.) diversity panel. Genetic Resources and Crop Evolution, 62, 939–950. doi:10.1007/s10722-014-0202-6
  • Flood, P. J., Harbinson, J., & Aarts, M. G. M. (2011). Natural genetic variation in plant photosynthesis. Trends in Plant Science, 16, 327–335. doi:10.1016/j.tplants.2011.02.005
  • Furbank, R. T. (2011). Evolution of the C4 photosynthetic mechanism: Are there really three C4 acid decarboxylation types? Journal of Experimental Botany, 62, 3103–3108. doi:10.1093/jxb/err080
  • Ghannoum, O., von Caemmerer, S., & Conroy, J. P. (2001). Carbon and water economy of Australian NAD-ME and NADP-ME C4 grasses. Australian Journal of Plant Physiology, 28, 213–223. doi:10.1071/PP00078
  • Ghannoum, O., Evans, J. R., Chow, W. S., Andrews, T. J., Conroy, J. P., & von Caemmerer, S. (2005). Faster rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relatives to NAD-malic enzyme C4 grasses. Plant Physiology, 137, 638–650. doi:10.1104/pp.104.054759
  • Ghannoum, O., Evans, J. R., & von Caemmerer, S. (2011). Nitrogen and water use efficiency of C4 plants. In A. S. Raghavendra & R. F. Sage (Eds.), C4 photosynthesis and related CO2 concentrating mechanisms (pp. 129–146). Dordrecht: Springer.
  • Hamaoka, N., Uchida, Y., Tomita, M., Kumagai, E., Araki, T., & Ueno, O. (2013). Genetic variations in dry matter production, nitrogen uptake, and nitrogen use efficiency in the AA genome oryza species grown under different nitrogen conditions. Plant Production Science, 16, 107–116. doi:10.1626/pps.16.107
  • Hatch, M. D. (1987). C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta (BBA) – Reviews on Bioenergetics, 895, 81–106. doi:10.1016/S0304-4173(87)80009-5
  • Heichel, G. H., & Musgrave, R. B. (1969). Varietal difference in net photosynthesis of Zea mays L. Crop Science, 9, 483–486. doi:10.2135/cropsci1969.0011183X000900040029x
  • Henderson, S., von Caemmerer, S., Farquhar, G. D., Wade, L., & Hammer, G. (1998). Correlation between carbon isotope discrimination and transpiration efficiency in lines of the C4 species Sorghum bicolor in the glasshouse and the field. Australian Journal of Plant Physiology, 25, 111–123. doi:10.1071/PP95033
  • Iltis, H. H., & Benz, B. F. (2000). Zea nicaraguensis (Poaceae), a new teosinte from pacific coastal Nicaragua. Novon, 10, 382–390. doi:10.2307/3392992
  • Kawamitsu, Y., Hiyane, S., Tamashiro, Y., & Hakoyama, S. (2002). Regulation of photosynthesis and water use efficiency in relation to stomatal frequency and interveinal distance in C3- and C4-Grass Species. Environmental Control in Biology, 40, 365–374. doi:10.2525/ecb1963.40.365
  • Kiran, T. V., Rao, Y. V., Subrahmanyam, D., Rani, N. S., Bhadana, V. P., Rao, P. R., & Voleti, S. R. (2013). Variation in leaf photosynthetic characteristics in wild rice species. Photosynthetica, 51, 350–358. doi:10.1007/s11099-013-0032-3
  • Koteyeva, N. K., Voznesenskaya, E. V., & Edwards, G. E. (2015). An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis. Plant Science, 235, 70–80. doi:10.1016/j.plantsci.2015.03.004
  • Lawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 164, 1556–1570. doi:10.1104/pp.114.237107
  • Lawson, T., Simkin, A. J., Kelly, G., & Granot, D. (2014). Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behavior. New Phytologist, 203, 1064–1081. doi:10.1111/nph.12945
  • Leonardos, E. D., & Grodzinski, B. (2000). Photosynthesis, immediate export and carbon partitioning in source leaves of C3, C3–C4 intermediate and C4 Panicum and Flaveria species at ambient and elevated CO2 levels. Plant, Cell and Environment, 23, 839–851. doi:10.1046/j.1365-3040.2000.00604.x
  • McCouch, S. (2004). Diversifying selection in plant breeding. PLoS Biology, 2, e347. doi:10.1371/journal.pbio.0020347
  • Nose, A., Uehara, M., & Kawamitsu, Y. (1994). Variations in leaf gas exchange traits of saccharum including feral sugarcane, Saccharum spontaneum L. Japanese Journal of Crop Science, 63, 489–495. doi:10.1626/jcs.63.489
  • O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. BioScience, 38, 328–336. doi: 10.2307/1310735
  • Osmond, C. B., Winter, K., & Ziegler, H. (1982). Functional significance of different pathways of CO2 fixation in photosynthesis. In O. L. Lange, P. S. Nobel, & C. B. Osmond (Eds.), Encyclopedia of plant physiology, New series, Vol. 12B (pp. 479–547). Berlin: Springer Verlag.
  • Pearce, R. B., Carlson, D. K., Barnes, D. K., Hart, R. H., & Hanson, C. H. (1969). Specific leaf weight and photosynthesis in alfalfa. Crop Science, 9, 423–426. doi:10.2135/cropsci1969.0011183X000900040010
  • Pearcy, R. W., & Ehleringer, J. (1984). Comparative ecophysiology of C3 and C4 plants. Plant, Cell and Environment, 7, 1–13. doi:10.1111/j.1365-3040.1984.tb01194.x
  • Pengelly, J. J. L., Tan, J., Furbank, R. T., & von Caemmerer, S. (2012). Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO2 through the C4 cycle. Plant Physiology, 160, 1070–1080. doi:10.1104/pp.112.203240
  • Sage, R. F. & Pearcy, R. W. (1987). The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology, 84, 959–963. doi:10.1104/pp.84.3.959
  • Sato, R., & Suzuki, Y. (2010). Carbon and nitrogen stable isotope analysis by EA/IRMS. Researches in Organic Geochemistry, 26, 21–29. doi:10.20612/rog.26.0_21
  • Scafaro, A. P., Haynes, P. A., & Atwell, B. J. (2010). Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. Journal of Experimental Botany, 61, 191–202. doi:10.1093/jxb/erp294
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 Years of image analysis. Nature Methods, 9, 671–675. doi:10.1038/nmeth.2089
  • Sharwood, R. E., Sonawane, B. V., & Ghannoum, O. (2014). Photosynthetic flexibility in maize exposed to salinity and shade. Journal of Experimental Botany, 65, 3715–3724. doi:10.1093/jxb/eru130
  • Suresh, K., Rao, K. L. N., & Nair, T. V. R. (1997). Genetic variability in photosynthetic rate and leaf characters in Brassicaceae coenospecies. Photosynthetica, 33, 173–178. doi:10.1023/A:1022147910426
  • Taylor, S. H., Hulme, S. P., Rees, M., Ripley, B. S., Woodward, F. I., & Osborne, C. P. (2010). Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytologist, 185, 780–791. doi:10.1111/j.1469-8137.2009.03102.x
  • Togawa, Y., & Ueno, O. (2015). Comparison of resource use efficiencies involved in photosynthesis among biochemical subtypes of C4 grasses. Abstracts of 239th Meeting of the Crop Science Society of Japan, Tokyo. (p. 209).
  • Tsutsumi, N., Tohya, M., Nakashima, T., & Ueno, O. (2017). Variations in structural, biochemical, and physiological traits of photosynthesis and resource use efficiency in Amaranthus species (NAD-ME-type C4). Plant Production Science, 20, 300–312. doi:10.1080/1343943X.2017.1320948
  • Ueno, O., & Sentoku, N. (2006). Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies. Plant, Cell and Environment, 29, 257–268. doi:10.1111/j.1365-3040.2005.01418.x
  • Ueno, O., Kawano, Y., Wakayama, M., & Takeda, T. (2006). Leaf vascular systems in C3 and C4 grasses: A two-dimensional analysis. Annals of Botany, 97, 611–621. doi:10.1093/aob/mcl010
  • Usuda, H. (1984). Variations in the photosynthetic rate and activity of photosynthetic enzymes in maize leaf tissue of different ages. Plant and Cell Physiology, 25, 1297–1301. doi:10.1093/oxfordjournals.pcp.a076838
  • Usuda, H., Ku, M. S. B., & Edwards, G. E. (1985). Influence of light intensity during growth on photosynthesis and activity of several key photosynthetic enzymes in a C4 plant (Zea mays). Physiologia Plantarum, 63, 65–70. doi:10.1111/j.1399-3054.1985.tb02819.x
  • Vogan, P. J., & Sage, R. F. (2011). Water-use efficiency and nitrogen-use efficiency of C3–C4 intermediate species of Flaveria Juss (Asteraceae). Plant, Cell and Environment, 34, 1415–1430. doi:10.1111/j.1365-3040.2011.02340.x
  • von Caemmerer, S., & Furbank, R. T. (2016). Strategies for improving C4 photosynthesis. Current Opinion in Plant Biology, 31, 125–134. doi:10.1016/j.pbi.2016.04.003
  • von Caemmerer, S., Millgate, A., Farquhar, G. D., & Furbank, R. T. (1997). Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase by antisense RNA in the C4 plant Flaveria bidentis leads to reduced assimilation rates and increased carbon isotope discrimination. Plant Physiology, 113, 469–477. doi:10.1104/pp.113.2.469
  • Walker, R. P., Acheson, R. M., Técsi, L. I., & Leegood, R. C. (1997). phosphoenolpyruvate carboxykinase in C4 plants: Its role and regulation. Australian Journal of Plant Physiology, 24, 459–468. doi:10.1071/PP97007
  • Wingler, A., Walker, R. P., Chen, Z. H., & Leegood, R. C. (1999). phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiology, 120, 539–545. doi:10.1104/pp.120.2.539
  • Wong, S. C., Cowan, I. R., & Farquhar, G. D. (1985). Leaf conductance in relation to rate of CO2 assimilation. 1. Influence of nitrogen nutrition, phosphorous nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. Plant Physiology, 78, 821–825. doi:10.1104/pp.78.4.830
  • Zhu, X. G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261. doi:10.1146/annurev-arplant-042809-112206