5,501
Views
40
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant

, , , , , , , , & show all
Pages 389-395 | Received 09 Jun 2017, Accepted 26 Oct 2017, Published online: 10 Nov 2017

References

  • Abad, L. V., Aurigue, F. B., Relleve, L. S., Montefalcon, D. R. V., & Lopez, G. E. P. (2016). Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter. Radiation Physics and Chemistry, 118, 75–80. doi:10.1016/j.radphyschem.2015.03.001
  • Agrawal, G. K., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A., & Saji, H. (2002). Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiology and Biochemistry, 40, 1061–1069. doi:10.1016/S0981-9428(02)01471-7
  • Al-Tawaha, A. M., Seguin, P., Smith, D. L., & Beaulieu, C. (2005). Biotic elicitors as a means of increasing isoflavone concentration of soybean seeds. Annals of Applied Biology, 146, 303–310. doi:10.1111/j.1744-7348.2005.040106.x
  • Anusuya, S., & Sathiyabama, M. (2016). Effect of chitosan on growth, yield and curcumin content in turmeric under field condition. Biocatalysis and Agricultural Biotechnology, 6, 102–106. doi:10.1016/j.bcab.2016.03.002
  • Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M., & Vernet, G. (2006). Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology, 96, 1188–1194. doi:10.1094/PHYTO-96-1188
  • Cabrera, J. C., Messiaen, J., Cambier, P., & Van Cutsem, P. (2006). Size, acetylation and concentration of chitooligosaccharide elicitor determine the switch from defense involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiologia Plantarum, 127, 44–56. doi:10.1111/j.1399-3054.2006.00677.x
  • Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agriculture uses of plant biostimulants. Plant and Soil, 383, 3–41. doi:10.1007/s11104-014-2131-8
  • Chamnanmanoontham, N., Pongprayoon, W., Pichayangkura, R., Roytrakul, S., & Chadchawan, S. (2015). Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regulation, 75, 101–114. doi:10.1007/s10725-014-9935-7
  • Costales, D., Falcón, A. B., Nápoles, M. C., de Winter, J., Gerbaux, P., Onderwater, R. C. A., … Cabrare, J. C. (2016). Effect of chitosaccharides in nodulation and growth in vitro of inoculated soybean. American Journal of Plant Sciences, 7, 1380–1391. doi:10.4236/ajps.2016.79131
  • Dar, T. A., Uddin, M., Khan, M. M. A., Ali, A., Mir, S. R., & Varshney, L. (2015). Effect of Co-60 irradiated chitosan and phosphorus fertilizer on growth, yield and trigonelline content of Trigonella foenum-graecum L. Journal of Radiation Research and Applied Sciences, 8, 446–458. doi:10.1016/j.jrras.2015.03.008
  • Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J. J., Eberhard, S., … Albersheim, P. (1992). Oligosaccharins-Oligosaccharides that regulate growth, development and defense responses in plants. Glycobiology, 2, 181–198. doi:10.1093/glycob/2.3.181
  • Das, S. N., Madhuprakash, J., Sarma, P. V., Purushotham, P., Suma, K., Manjeet, K., … Podile, A. P. (2015). Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Critical Reviews in Biotechnology, 35, 29–43. doi:10.3109/07388551.2013.798255
  • Dere, S., Güneş, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22, 13–17.
  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. doi:10.1016/j.scienta.2015.09.021
  • Duy, N. N., Phu, D. V., Anh, N. T., & Hien, N. Q. (2011). Synergistic degradation to prepare oligochitosan by & γ-irradiation of chitosan solution in the presence of hydroperoxide. Radiation Physics and Chemistry, 80, 848–853. doi:10.1016/j.radphyschem.2011.03.012
  • Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers, 84, 751–755. doi:10.1016/j.carbpol.2010.07.066
  • Dzung, N. A., & Thang, N. T. (2002). Effects of oligoglucosamine prepared by enzyme degradation on the growth of soybean. Advances in Chitin Science, 5, 463–467.
  • El-Sawy, N. M., El-Rehim, H. A. A., Elbarbary, A. M., & Hegazy, E. A. (2010). Radiation-induced degradation of chitosan for possible use as growth promoter in agricultural purposes. Carbohydrate Polymers, 79, 555–562. doi:10.1016/j.carbpol.2009.09.002
  • Falcón, A. B., Cabrera, J. C., Costales, D., Ramírez, M. A., Cabrera, G., Toledo, V., & Martínez-Téllez, M. A. (2008). The effect of size and acetylation degree of chitosan derivatives on tobacco plant protection against Phytophthora parasitica nicotianae. World Journal of Microbiology and Biotechnology, 24, 103–112. doi:10.1007/s11274-007-9445-0
  • Falcón-Rodríguez, A. B., Costales, D., Cabrera, J. C., & Martínez-Téllez, M. A. (2011). Chitosan physico-chemical properties modulate defense responses and resistance in tobacco plants against the oomycete Phytophthora nicotianae. Pesticide Biochemistry and Physiology, 100, 221–228. doi:10.1016/j.pestbp.2011.04.005
  • Garg, A., & Balodi, R. (2014). Recent trends in agriculture: Vertical farming and organic farming. Advances in Plants and Agriculture Research, 1, 00023. doi:10.15406/apar.2014.01.00023
  • Hien, Q. N. (2004). Radiation degradation of chitosan and some biological effect, radiation processing of polysaccharides (IAEA-TECHDOC-1422). (pp. 67–73). Vienna: IAEA.
  • Hien, N. Q., Nagasawa, N., Tham, L. X., Yoshii, F., Dang, V. H., Mitomo, H., … Kume, T. (2000). Growth-promotion of plants with depolymerized alginates by irradiation. Radiation Physics and Chemistry, 59, 97–101. doi:10.1016/S0969-806X(99)00522-8
  • Huq, A. S. M. A., & Arshad, F. M. (2010). Technical efficiency of chili production. American Journal of Applied Sciences, 7, 185–190. doi:10.3844/ajassp.2010.185.190
  • Katiyar, D., Hemantaranjan, A., Singh, B., & Bhanu, A. N. (2014). A future perspective in crop protection: Chitosan and its oligosaccharides. Advances in Plants and Agriculture Research, 1, 00006. doi:10.15406/apar.2014.01.00006
  • Kendra, D. F., & Hadwiger, L. A. (1984). Characterization of the smallest chitosan oligomer that is maximally antifungal to Fursarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology, 8, 276–281. doi:10.1016/0147-5975(84)90013-6
  • Khan, W., Prithiviraj, B., & Smith, L. D. (2003). Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. Journal of Plant Physiology, 160, 859–863. doi:10.1078/0176-1617-00905
  • Lei, C., Ma, D., Pu, G., Qiu, X., Du, H., Wang, H., … Liu, B. (2011). Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Industrial Crops and Products, 33, 176–182. doi:10.1016/j.indcrop.2010.10.001
  • Luan, L. Q., Nagasawa, N., Tamada, M., & Nakanishi, T. M. (2006). Enhancement of plant growth activity of irradiated chitosan by molecular weight fractionation. Radioisotopes, 55, 21–27. doi:10.3769/radioisotopes.55.21
  • Luan, L. Q., & Uyen, N. H. P. (2014). Radiation degradation of (1 → 3)-β-D-glucan from yeast with a potential application as a plant growth promoter. International Journal of Biological Macromolecules, 69, 165–170. doi:10.1016/j.ijbiomac.2014.05.041
  • Ma, L. J., Li, Y. Y., Wang, L. L., Li, X. M., Lui, T., & Bu, N. (2014). Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. International Journal of Agriculture and Biology, 16, 766–770.
  • Mondal, M. M. A., Puteh, A. B., Dafader, N. C., Rafii, M. Y., & Malek, M. A. (2013). Foliar application of chitosan improves growth and yield in maize. Journal of Food, Agriculture and Environment, 11, 520–523.
  • Mourya, V. K., Inamdar, N. N., & Choudhari, Y. M. (2011). Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science Series A, 53, 583–612. doi:10.1134/S0965545X11070066
  • Nge, K. L., Nwe, N., Chandrkrachang, S., & Stevens, W. F. (2006). Chitosan as a growth stimulator in orchid tissue culture. Plant Science, 170, 1185–1190. doi:10.1016/j.plantsci.2006.02.006
  • No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65–72. doi:10.1016/S0168-1605(01)00717-6
  • Phu, D. V., Du, B. D., Tuan, L. N. A., Tam, H. V., & Hien, N. Q. (2017). Preparation and foliar application of oligochitosan and oligochitosan-nanosilica on the enhancement of soybean seed yield. International Journal of Environment, Agriculture and Biotechnology, 2, 421–428. doi:10.22161/ijeab/2.1.53
  • Pichyangkura, R., & Chadchawan, S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196, 49–65. doi:10.1016/j.scienta.2015.09.031
  • Rodríguez, A. T., Ramírez, M. A., Cárdenas, R. M., Hernández, A. N., Velázquez, M. G., & Bautista, S. (2007). Induction of defense response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology, 89, 206–215. doi:10.1016/j.pestbp.2007.06.007
  • Sharma, F., Fleming, S. C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26, 465–490. doi:10.1007/s10811-013-0101-9
  • Tiwari, R. K. (2009). Post harvest profile of chili. Retrieved from http://agmarknet.gov.in/Others/preface-chhilli.pdf
  • Vander, P., Vårum, K. M., Domard, A., Gueddari, N. E. E., & Moerschbacher, B. M. (1998). Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiology, 118, 1353–1359. doi:10.1104/pp.118.4.1353
  • Vasyukova, N. I., Zinov’eva, S. V., Il’inskaya, L. I., Perekhod, E. A., Chalenko, G. I., Gerasimova, N. G., … Ozeretskovskaya, O. L. (2001). Modulation of plant resistance to diseases by water- soluble chitosan. Applied Biochemistry and Microbiology, 37, 103–109. doi:10.1023/A:1002865029994
  • Walker-Simmons, M., Hadwiger, L., & Ryan, C. A. (1983). Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochemical and Biophysical and Research Communications, 110, 194–199. doi:10.1016/0006-291X(83)91279-2
  • Xia, W., Liu, P., Zhang, J., & Chen, J. (2011). Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids, 25, 170–179. doi:10.1016/j.foodhyd.2010.03.003
  • Yin, H., Fretté, X. C., Christensen, L. P., & Grevsen, K. (2012). Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). Journal of Agricultural and Food Chemistry, 60, 136–143. doi:10.1021/jf204376j
  • Yin, H., Zhao, X., & Du, Y. (2010). Oligochitosan: A plant disease vaccine-A review. Carbohydrate Polymers, 82, 1–8. doi:10.1016/j.carbpol.2010.03.066
  • Zhang, X., Li, K., Liu, S., Xing, R., Yu, H., Chen, X., & Li, P. (2016). Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydrate Polymers, 138, 27–33. doi:10.1016/j.carbpol.2015.11.050
  • Zhao, X., She, X., Yu, W., Du, Y., & Liang, X. (2007). Induction of antiviral resistance and stimulary effect by oilgochitosan in tobacco. Pesticide Biochemistry and Physiology, 87, 78–84. doi:10.1016/j.pestbp.2006.06.006
  • Zou, P., Li, K., Liu, S., Xing, R., Qin, Y., Yu, H., … Li, P. (2015). Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydrate Polymers, 126, 62–69. doi:10.1016/j.carbpol.2015.03.028