2,142
Views
6
CrossRef citations to date
0
Altmetric
Crop Physiology

Evaluation of performance of sorghum varieties grown in Tokyo for sugar accumulation and its correlation with vacuolar invertase genes SbInv1 and SbInv2

, ORCID Icon, , & ORCID Icon
Pages 328-338 | Received 12 Jun 2018, Accepted 06 Aug 2018, Published online: 29 Aug 2018

References

  • Almodares, A., & Hadi, M. R. (2009). Production of bioethanol from sweet sorghum: A review. African Journal of Agricultural Research, 4, 772–780.
  • Bihmidine, S., Baker, R. F., Hoffner, C., & Braun, D. M. (2015). Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential sucrose transporter expression. BMC Plant Biology, 15, 186–186.
  • Bihmidine, S., Julius, B. T., Dweikat, I., & Braun, D. M. (2016). Tonoplast sugar transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signaling and Behavior, 11, 1–7.
  • Botha, F. C., & Black, K. G. (2000). Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Australian Journal of Plant Physiology, 27, 81–85.
  • Channappagoudar, B. B., Biradar, N. R., Patil, J. B., & Hiremath, S. M. (2007). Study on morpho-physiological, biophysical characters and alcohol production in sweet sorghum genotypes. Karnataka Journal of Agricultural Sciences, 20, 234–237.
  • Etxeberria, E., Pozueta-Romero, J., & Gonzalez, P. (2012). In and out of the plant storage vacuole. Plant Science, 190, 52–61.
  • Fujii, A., Nakamura, S., Nabeya, K., Nakajima, T., & Goto, Y. (2016). Relation between seeding times and stem yield of sorghum in cold region in Japan. Plant Production Science, 19, 73–80.
  • Ganesh, K. C., Fatima, A., Srinivasa, R. P., Reddy, B. V. S., Rathore, A., Nageswar, R. R., … Kamal, A. (2010). Characterization of improved sweet sorghum genotypes for biochemical parameters, sugar yield and its attributes at different phenological stages. Sugar Tech, 12, 322–328.
  • Grof, C. P. L., Albertson, P. L., Bursle, J., Perroux, J. M., Bonnett, G. D., & Manners, J. M. (2007). Sucrose-phosphate synthase, a biochemical marker of high sucrose accumulation in sugarcane. Crop Science, 47, 1530–1539.
  • Gutjahr, S., Clément-Vidal, A., Soutiras, A., Sonderegger, N., Braconnier, S., Dingkuhn, M., & Luquet, D. (2013). Grain, sugar and biomass accumulation in photoperiod-sensitive sorghums. II. Biochemical processes at internode level and interaction with phenology. Functional Plant Biology, 40, 355–368.
  • Leigh, R. A. (1984). The role of the vacuole in the accumulation and mobilization of sucrose. Plant Growth Regulation, 2, 339–346.
  • Liu, Y., Nie, Y. D., Han, F. X., Zhao, X. N., Dun, B. Q., Lu, M., & Li, G. Y. (2014). Allelic variation of a soluble acid invertase gene (SAI-1) and development of a functional marker in sweet sorghum [Sorghum bicolor (L.) Moench]. Molecular Breeding, 33, 721–730.
  • Mace, E. S., Tai, S., Gilding, E. K., Li, Y., Prentis, P. J., Bian, L., …., & Wang, J. (2013). Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature Communications, 4, 2320.
  • Mathur, S., Umakanth, A. V., Tonapi, V. A., Sharma, R., & Sharma, M. K. (2017). Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnology for Biofuels, 10, 146–146.
  • McBee, G. G., & Miller, F. R. (1982). Carbohydrates in sorghum culms as influenced by cultivars, spacing, and maturity over a diurnal period. Crop Science, 22, 381–385.
  • McKinley, B., Rooney, W., Wilkerson, C., & Mullet, J. (2016). Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. The Plant Journal, 88, 662–680.
  • Milne, R. J., Byrt, C. S., Patrick, J. W., & Grof, C. P. L. (2013). Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Frontiers in Plant Science, 4, 223.
  • Mizuno, H., Kasuga, S., & Kawahigashi, H. (2016). The sorghum SWEET gene family: Stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels, 9, 127–127.
  • Mocoeur, A., Zhang, Y. M., Liu, Z. Q., Shen, X., Zhang, L. M., Rasmussen, S. K., & Jing, H. C. (2015). Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolor). Theoretical and Applied Genetics, 128, 1685–1701.
  • Murray, S. C., Sharma, A., Rooney, W. L., Klein, P. E., Mullet, J. E., Mitchell, S. E., & Kresovich, S. (2008). Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain non-structural carbohydrates. Crop Science, 48, 2165–2179.
  • Nakamura, S., Nakajima, N., Nitta, Y., & Goto, Y. (2011). Analysis of successive internode growth in sweet sorghum using leaf number as a plant age indicator. Plant Production Science, 14, 299–306.
  • Okamura, M., Hirose, T., Hashida, Y., Yamagishi, T., Starch Ohsugi, R., & Aoki, N. (2013). Reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Functional Plant Biology, 40, 1137–1146.
  • Palaniswamy, H., Syamaladevi, D. P., Mohan, C., Philip, A., Petchiyappan, A., & Narayanan, S. (2016). Vacuolar targeting of r-proteins in sugarcane leads to higher levels of purifiable commercially equivalent recombinant proteins in cane juice. Plant Biotechnology Journal, 14, 791–807.
  • Paterson, A. H. (2008). Genomics of sorghum. International Journal of Plant Genomics, 2008, 362451.
  • Qazi, H. A., Paranjpe, S., & Bhargava, S. (2012). Stem sugar accumulation in sweet sorghum - Activity and expression of sucrose metabolizing enzymes and sucrose transporters. Journal of Plant Physiology, 169, 605–613.
  • Rao, P. S., Kumar, C. G., & Reddy, B. V. S. (2013). Characterization of improved sweet Sorghum cultivars (pp. 1–15). Berlin: Springer.
  • Reddy, P. S., Reddy, B. V. S., & Rao, P. S. (2014). Genotype by sowing date interaction effects on sugar yield components in sweet sorghum (Sorghum bicolor L. Moench). SABRAO Journal of Breeding and Genetics, 46(2), 241–255.
  • Rutto, L. K., Xu, Y., Brandt, M., Ren, S., & Kering, M. K. (2013). Juice, ethanol, and grain yield potential of five sweet sorghum (Sorghum bicolor [L.] Moench) cultivars. Journal of Sustainable Bioenergy Systems, 3, 113–118.
  • Shiringani, A. L., Frisch, M., & Friedt, W. (2010). Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theoretical and Applied Genetics, 121, 323–336.
  • Shoemaker, C. E., & Bransby, D. I. (2010). The Role of Sorghum as a Bioenergy Feedstock. In R. Braun, D. Karlen & D. Johnson (Eds.), Sustainable Alternative Fuel Feedstock Opportunities, Challenges and Roadmaps for Six U.S. Regions (pp. 149–159). Proceedings of the Sustainable Feedstocks for Advance Biofuels Workshop, Atlanta, GA.
  • Shukla, S., Felderhoff, T. J., Saballos, A., & Vermerris, W. (2017). The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Research, 203, 181–191.
  • Teetor, V. H., Duclos, D. V., Wittenberg, E. T., Young, K. M., Chawhuaymak, J., Riley, M. R., & Ray, D. T. (2011). Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Industrial Crops and Products, 34, 1293–1300.
  • Thurber, C. S., Ma, J. M., Higgins, R. H., & Brown, P. J. (2013). Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Biology, 14, 68–68.
  • Tovignan, K., Fonceka, D., Ndoye, I., Cisse, N., & Luquet, D. (2016). The sowing date and post-flowering water status affect the sugar and grain production of photoperiodic, sweet sorghum through the regulation of sink size and leaf area dynamics. Field Crops Research, 192, 67–77.
  • Yang, L., Bao-Qing, D., Xiang-Na, Z., Mei-Qi, Y., Ming, L., & Gui-Ying, L. (2013). Correlation analysis between the key enzymes activities and sugar content in sweet sorghum (Sorghum bicolor L. Moench) stems at physiological maturity stage. Australian Journal of Crop Science, 7, 84–92.
  • Zhu, Y. J., Komor, E., & Moore, P. H. (1997). Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiology, 115, 609–616.