2,247
Views
12
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Analysis of factors related to varietal differences in the yield of rice (Oryza sativa L.) under Free-Air CO2 Enrichment (FACE) conditions

, ORCID Icon, , , , ORCID Icon, , , , & show all
Pages 19-27 | Received 14 Mar 2019, Accepted 10 Oct 2019, Published online: 06 Nov 2019

References

  • Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell & Environment, 30, 258–270.
  • Baker, J. T. (2004). Yield responses of southern US rice cultivars to CO2 and temperature. Agricultural and Forest Meteorology, 122, 129–137.
  • Chen, C. P., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., & Hasegawa, T. (2014). Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment. Plant and Cell Physiology, 55, 381–391.
  • GRiSP. (2013). Rice almanac (4th, pp. 1–283.) Los Banos: International Rice Research Institute.
  • Hasegawa, T., Sakai, H., Tokida, T., Shimono, H., Nakamura, H., Shimono, H., … Okada, M. (2015). Rice free-air carbon dioxide enrichment studies to improve assessment of climate change effects on rice agriculture. Functional Plant Biology, 40, 148–159.
  • Hasegawa, T., Sakai, T., Tokida, T., Nakamura, H., Zhu, C., Usui, Y., … Makino, A. (2013). Rice cultivar responses to elevated CO2 at two Free-Air CO2 Enrichment (FACE) sites in Japan. Functional Plant Biology, 40, 148–159.
  • Ikawa, I., Chen, C. P., Silma, M., Yoshimoto, M., Sakai, H., Tokida, T., … Hasegawa, T. (2017). Increasing canopy photosynthesis in rice can be achieved without a large increase in water use -A model based on free-air CO2 enrichment. Global Change Biology, 24, 1321–1341.
  • Kim, H. Y., Horie, T., Nakagawa, H., & Wada, K. (1996a). Kohon koh CO2 noudo joken ga suitou no seiiku syuryo ni oyobosu eikyo: Dai 1 hou Hatsuiku kanbutsuseisan oyobi seityosyokeisitsu ni tuite [Effects of elevated CO2 concentration and high temperature on growth and yield of rice. I. The effect on development, dry matter production and some growth characteristics]. Nihon Sakumotsu Gakkai Kiji, 65, 634–643.
  • Kim, H. Y., Horie, T., Nakagawa, H., & Wada, K. (1996b). Kohon koh CO2 noudo joken ga suitou no seiiku syuryo ni oyobosu eikyo: Dai 2 hou Syuryo oyobi syuryokouseiyouso nit suite [Effects of elevated CO2 concentration and high temperature on growth and yield of rice. II. The effect on yield and its components of Akihikari rice]. Nihon Sakumotsu Gakkai Kiji, 65, 644–651.
  • Kim, H.-Y., Lieffering, M., Kobayashi, K., Okada, M., Mitchell, M. W., & Gumpertz, M. (2003). Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research, 83, 261–270.
  • Kim, H.-Y., Lieffering, M., Miura, S., Kobayashi, K., & Okada, M. (2001). Growth and nitrogen uptake of CO2 enriched rice under field conditions. New Phytologist, 150, 223–229.
  • Kobayashi, K. (2001). FACE (kaihokei CO2 zouka) jikken [FACE (Free-Air CO2 Enrichment) experiment]. Nihon Sakumotsu Gakkai Kiji, 70, 1–16.
  • Kobayasi, H., & Horie, T. (1994). Suitou no eika narabini sikoubunnka ni oyobosu seisyokuseityouki no tainaitisso no eikyo [The effect of plant nitrogen condition during reproductive stage on the differentiation of spikelets and rachis branches in rice]. Nihon Sakumotsu Gakkai Kiji, 63, 193–199.
  • Liu, H., Yang, L., Wang, Y., Huang, J., Zhu, J., Yunxia, W., … Liu, G. (2008). Yield formation of CO2 enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Research, 108, 93–100.
  • Long, P. S., Ainsworth, E. A., Rogers, A., & Ort, R. O. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Annual Review of Plant Biology, 55, 591–628.
  • Ma, H., Zhu, J., Xie, Z., Liu, G., Zeng, Q., & Han, Y. (2007). Responses of rice and winter wheat to Free-Air CO2 Enrichment (China FACE) at rice/wheat rotation system. Plant and Soil, 294, 137–146.
  • Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., … van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241.
  • Moya, T. B., Ziska, L. H., Namuco, O. S., & Olszyk, D. (1998). Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon cioxide and temperature. Global Change Biology, 4, 645–656.
  • Nakamura, H., Tokida, T., Yoshimoto, M., Sakai, H., Fukuoka, M., & Hasegawa, T. (2012). Performance of the enlarged Rice-FACE system using pure CO2 installed in Tsukuba, Japan. Journal of Agricultural Meteorology, 68, 15–23.
  • Nakano, H., Yoshinaga, S., Takai, T., Arai-Sanoh, Y., Kondo, K., Yamamoto, T., … Kondo, M. (2017). Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions. Scientific Reports, 7, 1827.
  • Ohnishi, M., & Horie, T. (1999). Jyuryohou niyoru suitou kaku kikantyu no hikouzousei tansuikabutsu no kan-i teiryohou [A proxy analysis of nonstructural carbohydrate in rice plant by using the gravimetric method]. Nihon Sakumotsu Gakkai Kiji, 68, 126–136.
  • Ohsumi, A., Hamasaki, A., Nakagawa, H., Yoshida, H., Shiraiwa, T., & Horie, T. (2007). A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance. Annals of Botany, 99, 263–273.
  • Ohsumi, A., Takai, T., Ida, M., Yamamoto, T., Arai-Sanoh, Y., Yano, M., … Kondo, M. (2011). Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Research, 120, 68–75.
  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS One, 8, e66428.
  • Sakai, H., Tokida, T., Usui, Y., Nakamura, H., & Hasegawa, T. (2019). Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882. Plant Production Science. null-null. doi: 10.1080/1343943X.2019.1626255.
  • Sasaki, H., Aoki, N., Sakai, H., Hara, T., Uehara, N., Ishimaru, K., & Kobayashi, K. (2005). Effects of CO2 enrichment on the translocation and partitioning of carbon at the early grain-filling stage in rice (Oryza sativa L.). Plant Production Science, 8, 8–15.
  • Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K., & Hasegawa, T. (2009). Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany, 60, 523–532.
  • Usui, Y., Sakai, H., Tokida, T., Nakamura, H., Nakagawa, H., & Hasegawa, T. (2016). Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Global Change Biology, 22, 1256–1270.
  • Yamakawa, Y., Saigusa, M., Okada, M., & Kobayashi, K. (2004). Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant and Soil, 259, 367–372.
  • Yamamoto, T., Nagasaki, H., Yonemaru, J., Ebana, K., Nakajima, M., Shibaya, T., & Yano, M. (2010). Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single nucleotide polymorphisms. BMC Genomics, 11, 267.
  • Yang, L., Huang, J., Yang, H., Zhu, J., Liu, H., Dong, G., … Wang, Y. (2006). The impact of Free-Air CO2 Enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research, 98, 141–150.
  • Yang, L., Liu, H., Wang, Y., Zhu, J., Huang, J., Liu, G., … Wang, Y. (2009). Impact of elevated CO2 concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crops Research, 112, 7–15.
  • Yang, L., Wang, Y., Dong, Y., Gu, H., Huang, H., Zhu, H., … Han, Y. (2007). The impact of Free-Air CO2 Enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research, 102, 128–140.
  • Yoshida, H., Horie, T., Nakazono, K., Ohno, H., & Nakagawa, H. (2011). Simulation of the effects of genotype and N availability on rice growth and yield response to an elevated atmospheric CO2 concentration. Field Crops Research, 124, 433–440.
  • Yoshimoto, M., Oue, H., & Kobayashi, K. (2005). Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agricultural and Forest Meteorology, 133, 226–246.
  • Yoshinaga, S., Takai, T., Arai-Sanoh, Y., Ishimaru, T., & Kondo, M. (2013). Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crops Research, 150, 74–82.
  • Ziska, L. H., Bunce, J. A., Shimono, H., Gealy, D. R., Baker, J. T., Newton, P. C. D., … Wilson, L. T. (2012). Food security and climate change on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proceedings of the Royal Society B: Biological Sciences, 279, 4097–4105.
  • Ziska, L. H., Manalo, P. A., & Ordonez, R. A. (1996). Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: Growth and yield response of 17 cultivars. Journal of Experimental Botany, 47, 1353–1359.