8,092
Views
5
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Panicle inclination influences pollination stability of rice (Oryza sativa L.)

, &
Pages 60-68 | Received 08 May 2019, Accepted 12 Nov 2019, Published online: 04 Dec 2019

References

  • Baker, H. G. (1955). Self-compatibility and establishment after “long-distance” dispersal. Evolution, 9, 347–349.
  • Brys, R., & Jacquemyn, H. (2011). Variation in the functioning of autonomous self-pollination, pollinator services and floral traits in three Centaurium species. Annals of Botany, 107, 917–925.
  • Darwin, C. (1876). The effects of cross and self-fertilization in the vegetable kingdom (pp. 356–414). London: Murray.
  • Darwin, C. (1877). The different forms of flowers on plants of the same species (pp. 137–187). New York, NY: D. Appleton & Co.
  • Dong, H., Zhao, H., Xie, W., Han, Z., Li, G., Yao, W., … Yang, L. (2016). A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genetics, 12, e1006412.
  • Fægri, K., & Van der Pijl, L. (1979). The principle of pollination ecology (3rd revised ed., pp. 40). Oxford: Pergamon Press.
  • FAO. (2013). Statistical Yearbook (pp. 634). Rome: Food and Agricultural Organization.
  • Hoshikawa, K. (1993). Science of the rice plant: Vol. 1. morphology. In T. Matsuo & K. Hoshikawa (Eds.), Anthesis, fertilization and development of caryopsis (pp. 339–376). Tokyo: Food and Agriculture policy research center.
  • Kalisz, S., Vogler, D. W., & Hanley, K. M. (2004). Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature, 430, 884–887.
  • Kobayashi, K., Horisaki, A., Niikura, S., & Ohsawa, R. (2009). Floral morphology affects seed productivity through pollination efficiency in radish (Raphanus sativus L.). Euphytica, 168, 263–274.
  • Kobayashi, K., Matsui, T., Murata, Y., & Yamamoto, M. (2011). Percentage of dehisced thecae and length of dehiscence control pollination stability of rice cultivars at higher temperatures. Plant Production Science, 14, 89–95.
  • Luo, Y., & Widmer, A. (2013). Herkogamy and its effects on mating patterns in Arabidopsis thaliana. PLoS One, 8, e57902.
  • Matsui, T., & Kagata, H. (2003). Characteristics of floral organs related to reliable self-pollination in rice (Oryza sativa L.). Annals of Botany, 91, 473–477.
  • Matsui, T., Kobayasi, K., Kagata, H., & Horie, T. (2005). Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition. Plant Production Science, 8, 109–114.
  • Matsui, T., Kobayasi, K., Yoshimoto, M., & Tian, X. Dependence of pollination and fertilization in rice (Oryza sativa L.) on floret height within the canopy. 2019. Manuscript submitted for publication.
  • Matsui, T., Omasa, K., & Horie, T. (1997). High temperature induced floret sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Japanese Journal of Crop Science, 66, 445–449.
  • Matsui, T., Omasa, K., & Horie, T. (1999). Mechanism of anther dehiscence in rice (Oryza sativa L.). Annals of Botany, 84, 501–506.
  • Matsui, T., Omasa, K., & Horie, T. (2000). High temperature at flowering inhibit swelling of the pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Production Science, 3, 430–434.
  • Matsui, T., Omasa, K., & Horie, T. (2001). The difference in sterility due to high temperatures during the flowering period among Japonica-rice varieties. Plant Production Science, 14, 90–93.
  • Muller, H. (1883). The fertilisation of flowers (pp. 12–13). London, UK: Macmillan.
  • Nishiyama, I., & Satake, T. (1981). High temperature damage in the rice plant. Japanese Journal of Tropical Agriculture, 25(1), 14–19. In Japanese.
  • Opedal, Ø. H., Albertsen, E., Armbruster, W. S., Pérez-Barrales, R., Falahati-Anbaran, M., & Pélabon, C. (2016). Evolutionary consequences of ecological factors: Pollinator reliability predicts mating-system traits of a perennial plant. Ecology Letters, 19, 1486–1495.
  • Satake, T. (1972). Circular dense-culture of rice plants in pots: The purpose of obtaining many uniform panicles of main stems. Japanese Journal of Crop Science, 41, 361–362. In Japanese.
  • Satake, T., & Yoshida, S. (1978). High temperature-induced sterility in indica rice at flowering. Japanese Journal of Crop Science, 47, 6–17.
  • Shibata, M., Sasaki, K., & Shimazaki, Y. (1970). Effects of air-temperature and water-temperature at each stage of the growth of lowland rice: I. Effect of air-temperature and water-temperature on the percentage of sterile grains. Japanese Journal of Crop Science, 39, 401–408. In Japanese with English summary.
  • Shimazaki, Y., Satake, T., Ito, N., Doi, Y., & Watanabe, K. (1964). Sterile spikelets in rice plants induced by low temperature during the booting stage. Research Bulletin of the Hokkaido National Agricultural Experiment Station (Japan), 83, 1–9. In Japanese with English summary.
  • Shimizu, M., Tomita-Yokotani, K., Nakamura, T., & Yamashita, M. (2005). Tropism in azalea and lily flowers. Advances in Space Research, 36, 1298–1302.
  • Song, Z. P., Lu, B. R., & Chen, J. K. (2001). A study of pollen viability and longevity in Oryza rufipogon, O. sativa, and their hybrids. International Rice Research Notes (Philippines), 26, 31–32.
  • Toräng, P., Vikström, L., Wunder, J., Wötzel, S., Coupland, G., & Agren, J. (2017). Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution, 71, 2206–2218.
  • Webb, C. J., & Lloyd, D. G. (1986). The avoidance of interference between the presentation of pollen and stigmas in angiosperms. II. Herkogamy. New Zealand Journal of Botany, 24, 163–178.
  • Weerakoon, W. M. W., Maruyama, A., & Ohba, K. (2008). Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L). Journal of Agronomy and Crop Science, 194, 135–140.