813
Views
1
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Ultra-fine bubble irrigation promotes coffee (Coffea arabica) seedling growth under repeated drought stresses

, & ORCID Icon
Pages 47-55 | Received 08 Apr 2023, Accepted 29 Nov 2023, Published online: 02 Jan 2024

References

  • Ahmed, A. K. A., Shi, X., Hua, L., Manzueta, L., Qing, W., Marhaba, T., & Zhang, W. (2018). Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. Journal of Agricultural and Food Chemistry, 66(20), 5117–5124. https://doi.org/10.1021/acs.jafc.8b00333
  • Amato, M., & Ritchie, J. T. (2002). Spatial distribution of roots and water uptake of maize (Zea mays L.) as affected by soil structure. Crop Science, 42(3), 773–780. https://doi.org/10.2135/cropsci2002.7730
  • Atabani, A. E., Ala’a, H., Kumar, G., Saratale, G. D., Aslam, M., Khan, H. A., Said, Z., & Mahmoud, E. (2019). Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 254, 115640. https://doi.org/10.1016/j.fuel.2019.115640
  • Blanco, F. F., & Folegatti, M. V. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, 62(4), 305–309. https://doi.org/10.1590/S0103-90162005000400001
  • Bresciani, L., Calani, L., Bruni, R., Brighenti, F., & Del Rio, D. (2014). Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Research International, 61, 196–201. https://doi.org/10.1016/j.foodres.2013.10.047
  • Bruno, I. P., Unkovich, M. J., Bortolotto, R. P., Bacchi, O. O., Dourado-Neto, D., & Reichardt, K. (2011). Fertilizer nitrogen in fertigated coffee crop: Absorption changes in plant compartments over time. Field Crops Research, 124(3), 369–377. https://doi.org/10.1016/j.fcr.2011.07.004
  • Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal: For Cell and Molecular Biology, 90(5), 856–867. https://doi.org/10.1111/tpj.13299
  • Da Matta, F. M. (2004). Exploring drought tolerance in coffee: A physiological approach with some insights for plant breeding. Brazilian Journal of Plant Physiology, 16(1), 1–6. https://doi.org/10.1590/S1677-04202004000100001
  • Da Matta, F. M., Rahn, E., Läderach, P., Ghini, R., & Ramalho, J. C. (2019). Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change, 152(1), 167–178. https://doi.org/10.1007/s10584-018-2346-4
  • Ebina, K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S., Morimoto, T., Koizumi, K., Yoshikawa, H., Balcazar, J. L., & Balcazar, J. L. (2013). Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One, 8(6), e65339. https://doi.org/10.1371/journal.pone.0065339
  • He, J., Liu, Y., Wang, T., Chen, W., Liu, B., Zhou, Y., & Li, Y. (2022). Effects of nanobubble in subsurface drip irrigation on the yield, quality, irrigation water use efficiency and nitrogen partial productivity of watermelon and muskmelon. International Agrophysics, 36(3), 163–171. https://doi.org/10.31545/intagr/150413
  • Iijima, M., Hirooka, Y., Kawato, Y., Watanabe, Y., Wada, K. C., Shinohara, N., Nanhapo, P. I., Wanga, M. A., & Yamane, K. (2017). Short-term evaluation of oxygen transfer from rice (Oryza sativa) to mixed planted drought-adapted upland crops under hydroponic culture. Plant Production Science, 20(4), 434–440. https://doi.org/10.1080/1343943X.2017.1379882
  • Iijima, M., Yamashita, K., Hirooka, Y., Ueda, Y., Yamane, K., & Kamimura, C. (2020). Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress. Plant Production Science, 23(3), 366–373. https://doi.org/10.1080/1343943X.2020.1725391
  • Iijima, M., Yamashita, K., Hirooka, Y., Ueda, Y., Yamane, K., & Kamimura, C. (2022a). Promotive or suppressive effects of ultrafine bubbles on crop growth depended on bubble concentration and crop species. Plant Production Science, 25(1), 78–83. https://doi.org/10.1080/1343943X.2021.1960175
  • Iijima, M., Yamashita, K., Hirooka, Y., Ueda, Y., Yamane, K., & Kamimura, C. (2022b). Ultrafine bubbles alleviated osmotic stress in soybean seedlings ultrafine bubbles alleviated osmotic stress in soybean seedlings. Plant Production Science, 25(2), 218–223. https://doi.org/10.1080/1343943X.2021.2021094
  • Iscaro, J. (2014). The impact of climate change on coffee production in Colombia and Ethiopia. Global Majority E-Journal, 5(1), 33–43.
  • Jaramillo, J., Muchugu, E., Vega, F. E., Davis, A., Borgemeister, C., Chabi-Olaye, A., & Thrush, S. (2011). Some like it hot: The influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PloS One, 6(9), e24528. https://doi.org/10.1371/journal.pone.0024528
  • Kato, Y., Okami, M., Tajima, R., Fujita, D., & Kobayashi, N. (2010). Root response to aerobic conditions in rice, estimated by Comair root length scanner and scanner-based image analysis. Field Crops Research, 118(2), 194–198. https://doi.org/10.1016/j.fcr.2010.04.013
  • Lai, Y., Ogata, T., & Hamada, K. (2022). Effects of ultrafine bubble water irrigation on dry weight allocation and nitrogen absorption of young southern highbush blueberry. Horticultural Research (Japan), 21, 11–16. (in Japanese with English abstract). https://doi.org/10.2503/hrj.21.11
  • Liu, S., Oshita, S., Kawabata, S., Makino, Y., & Yoshimoto, T. (2016). Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir, 32(43), 11295–11302. https://doi.org/10.1021/acs.langmuir.6b01621
  • Menezes-Silva, P. E., Sanglard, L. M., Ávila, R. T., Morais, L. E., Martins, S. C., Nobres, P., Patreze, C. M., Ferreira, M. A., Araújo, W. L., Fernie, A. R., & DaMatta, F. M. (2017). Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. Journal of Experimental Botany, 68(15), 4309–4322. https://doi.org/10.1093/jxb/erx211
  • Minamikawa, K., Takahashi, M., Makino, T., Tago, K., & Hayatsu, M. (2015). Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environmental Research Letters, 10(8), 084012. https://doi.org/10.1088/1748-9326/10/8/084012
  • Mochizuki, Y., Zhao, T., Kanematsu, W., Kawasaki, T., Saito, T., Ohyama, A., Nakano, A., & Higashide, T. (2019). Application of a growth model to validate the effects of an ultrafine-bubble nutrient solution on dry matter production and elongation of tomato seedlings. The Horticulture Journal, 88(3), 380–386. https://doi.org/10.2503/hortj.UTD-055
  • Nishihara, I., & Maeda, S. (2014). Ultrafine bubbles-generation, measurement, and application in the fields of food, agriculture, and cleaning. Food Processing and Ingredients. 49(3), 36–38. (in Japanese).
  • Ogura, M. (2018). Sustainability of the small coffee farmers in Sri Lanka: A study from the viewpoint of distribution structure. Hiroshima Peace Science. 40, 51–67. (in japanese).
  • Parecido, R. J., Soratto, R. P., Perdoná, M. J., & Gitari, H. I. (2022). Foliar-applied silicon may enhance fruit ripening and increase yield and nitrogen use efficiency of Arabica coffee. The European Journal of Agronomy, 140, 126602. https://doi.org/10.1016/j.eja.2022.126602
  • Pham, Y., Reardon-Smith, K., Mushtaq, S., & Cockfield, G. (2019). The impact of climate change and variability on coffee production: A systematic review. Climatic Change, 156(4), 609–630. https://doi.org/10.1007/s10584-019-02538-y
  • Purwanto, Y. A., Maulana, N. N., Sobir, S., Naibaho, N., & Naibaho, N. (2019). Effect of ultrafine bubbles water on seed germination. IOP Conference Series: Earth and Environmental Science, 355, 012073. https://doi.org/10.1088/1755-1315/355/1/012073
  • Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126(1), 45–51. https://doi.org/10.1111/j.0031-9317.2005.00582.x
  • Vinícius de Melo Pereira, G., Soccol, V. T., Brar, S. K., Neto, E., & Soccol, C. R. (2017). Microbial ecology and starter culture technology in coffee processing. Critical Reviews in Food Science and Nutrition, 57(13), 2775–2788. https://doi.org/10.1080/10408398.2015.1067759
  • Wang, Y., Wang, S., Sun, J., Dai, H., Zhang, B., Xiang, W., Hu, Z., Li, P., Yang, J., & Zhang, W. (2021). Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Science of the Total Environment, 800, 149627. https://doi.org/10.1016/j.scitotenv.2021.149627
  • Worku, M., & Astatkie, T. (2010). Dry matter partitioning and physiological responses of Coffea Arabica varieties to soil moisture deficit stress at the seedling stage in Southwest Ethiopia. African Journal of Agricultural Research, 5(15), 2066–2072.
  • Yamane, K., Nishikawa, M., Hirooka, Y., Narita, Y., Kobayashi, T., Kakiuchi, M., Iwai, K., & Iijima, M. (2022). Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea Arabica ‘typica’ under heat stress. Plant Production Science, 25(3), 337–349. https://doi.org/10.1080/1343943X.2022.2064309
  • Zhou, Y., Bastida, F., Zhou, B., Sun, Y., Gu, T., Li, S., & Li, Y. (2020). Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biology and Biochemistry, 141, 107663. https://doi.org/10.1016/j.soilbio.2019.107663