1,063
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vibration safety evaluation model and sensor network-based monitoring system for coke drums in operation

, , , , , ORCID Icon & show all
Pages 1399-1412 | Received 15 Dec 2021, Accepted 27 May 2022, Published online: 09 Jun 2022

References

  • Aasim, B. A., A. K. Karimi, J. Tomiyama, and Ö. Aydan. 2020. “Numerical Verification of accelerometer-based Assessment of hollow-type Pretensioned Concrete Girder.” Asian Journal of Civil Engineering 21 (3): 437–447. doi:10.1007/s42107-019-00219-w.
  • Amick, H., and M. Gendreau. 2000. “Construction Vibrations and Their Impact on vibration-sensitive Facilities.” In ASCE Construction Congress 6 (Orlanndo, Florida: ASCE), doi:10.1061/40475(278)80.
  • Annamdas, V. G. M., S. Bhalla, and C. K. Soh. 2017. “Applications of Structural Health Monitoring Technology in Asia.” Structural Health Monitoring 16 (3): 324–346. doi:10.1177/1475921716653278.
  • Chae, M. J., H. S. Yoo, J. Y. Kim, and M. Y. Cho. 2012. “Development of a Wireless Sensor Network System for Suspension Bridge Health Monitoring.” Automation in Construction 21: 237–252. doi:10.1016/j.autcon.2011.06.008.
  • Chen, J., and Z. Xia. 2014a. “Fatigue Behaviour of Coke Drum Materials under thermal-mechanical Cyclic Loading.” Theoretical and Applied Mechanics Letters 4 (4): 41006. doi:10.1063/2.1404106.
  • Chen, J., and Z. Xia. 2014b. “A Fatigue Life Prediction Method for Coke Drum Base, Weld, and HAZ Materials from Tensile Properties.” Materials & Design 63: 575–583. doi:10.1016/j.matdes.2014.06.056.
  • Deutsches Institut für Normung. 1999. DIN 4150-3: Structural Vibrations–Part 3: Effects of Vibration on Structures (Berlin: German Standards Organization (GSO)).
  • Dong, J. H., L. L. Guo, and B. J. Gao. 2015. “A Finite Element Analysis of the Cyclic Plasticity Behavior of Circumferential Weld of Coke Drum under Moving Axial Temperature Gradient.” Procedia Engineering 130: 307–321. doi:10.1016/j.proeng.2015.12.224.
  • Engery Information Administration. 2021. “U.S. Number of Operating Refineries as January 1, Annual.” Accessed 21 December 2009. https://www.eia.gov/opendata/qb.php?sdid=PET.8_NA_8OO_NUS_C.A
  • Guo, T., Z. Chen, S. Lu, and R. Yao. 2018. “Monitoring and Analysis of long-term Prestress Losses in post-tensioned Concrete Beams.” Measurement 122: 573–581. doi:10.1016/j.measurement.2017.07.057.
  • Jin, S. S., and H. J. Jung. 2018. “Vibration-based Damage Detection Using Online Learning Algorithm for output-only Structural Health Monitoring.” Structural Health Monitoring 17 (4): 727–746. doi:10.1177/1475921717717310.
  • Kim, Y., J. S. Park, B. K. Oh, T. Cho, J. M. Kim, S. H. Kim, and H. S. Park. 2019. “Practical Wireless Safety Monitoring System of long-span Girders Subjected to Construction Loading a Building under Construction.” Measurement 146: 524–536. doi:10.1016/j.measurement.2019.05.110.
  • Korea Meteorological Administration. 2021. “Open MET Data Portal.” Accessed 21 March 2007. https://data.kma.go.kr/cmmn/main.do
  • Korean Concrete Institute. 2012. Concrete Structure Design Code (KCI 2012). Seoul: Korean Concrete Institute.
  • Korean Standard. 2016. Rolled Steels for General Structure (KS D 3503). Seoul: Korean Agency for Technology and Standards.
  • Li, Z., Z. Xue, X. Wang, and F. Li. 2012. “Safe Life Estimation of Coke Drum in Service Environment.” Journal of Pressure Vessel Technology 134 (3). doi:10.1115/1.4005882.
  • Lin, S. W., T. H. Yi, H. N. Li, and L. Ren. 2017. “Damage Detection in the Cable Structures of a Bridge Using the Virtual Distortion Method.” Journal of Bridge Engineering 22 (8): 4017039. doi:10.1061/(ASCE)BE.1943-5592.0001072.
  • Magalhães, F., Á. Cunha, and E. Caetano. 2012. “Vibration Based Structural Health Monitoring of an Arch Bridge: From Automated OMA to Damage Detection.” Mechanical Systems and Signal Processing 28: 212–228. doi:10.1016/j.ymssp.2011.06.011.
  • Oh, B. K., B. Glisic, Y. Kim, and H. S. Park. 2020. “Convolutional Neural network–based Data Recovery Method for Structural Health Monitoring.” Structural Health Monitoring 19 (6): 1821–1838. doi:10.1177/1475921719897571.
  • Oka, M., H. Ambarita, M. Daimaruya, and H. Fujiki. 2011. “Study on the Effects of Switching Temperature on the Thermal Fatigue Life of the shell-to-skirt Junction of Coke Drum.” Journal of Pressure Vessel Technology 133 (6). doi:10.1115/1.4004564.
  • Park, H. S., and B. K. Oh. 2018. “Real-time Structural Health Monitoring of a Supertall Building under Construction Based on Visual Modal Identification Strategy.” Automation in Construction 85: 273–289. doi:10.1016/j.autcon.2017.10.025.
  • Park, H. S., J. Kim, and B. K. Oh. 2019. “Model Updating Method for Damage Detection of Building Structures under Ambient Excitation Using Modal Participation Ratio.” Measurement 133: 251–261. doi:10.1016/j.measurement.2018.10.023.
  • Penso, J. A., Y. M. Lattarulo, A. J. Seijas, J. Torres, D. Howden, and C. L. Tsai. 1999 Understanding failure mechanisms to improve reliability of coke drums PVP- American Society of Mechanical Engineers. Pressure Vessels and Piping Division Newsletter 1 August 1999 through 5 August 1999 395 Boston, Massachusetts . New York.ASME 243–253 .
  • Penso, J. A., C. L. Tsai, D. G. Howden, and W. O. Soboyejo. 2000. “Assessing Deterioration Conditions in Coke Drums.” Welding Journal 79 (8): 45–52.
  • Presas, A., D. Valentin, E. Egusquiza, C. Valero, M. Egusquiza, and M. Bossio. 2017. “Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-patches.” Sensors 17 (3): 660. doi:10.3390/s17030660.
  • Qarib, H., and H. Adeli. 2016. “A Comparative Study of Signal Processing Methods for Structural Health Monitoring.” Journal of Vibroengineering 18 (4): 2186–2204. doi:10.21595/jve.2016.17218.
  • Riveiro, B., M. J. DeJong, and B. Conde. 2016. “Automated Processing of Large Point Clouds for Structural Health Monitoring of Masonry Arch Bridges.” Automation in Construction 72: 258–268. doi:10.1016/j.autcon.2016.02.009.
  • Shang, Z., and Z. Shen. 2018. “Multi-point Vibration Measurement and Mode Magnification of Civil Structures Using video-based Motion Processing.” Automation in Construction 93: 231–240. doi:10.1016/j.autcon.2018.05.025.
  • Umar, S., M. Vafaei, and S. C. Alih. 2021. “Sensor clustering-based Approach for Structural Damage Identification under Ambient Vibration.” Automation in Construction 121: 103433. doi:10.1016/j.autcon.2020.103433.
  • Wu, Y., R. Zhu, Z. Cao, Y. Liu, and D. Jiang. 2020. “Model Updating Using Frequency Response Functions Based on Sherman–Morrison Formula.” Applied Sciences 10 (14): 4985. doi:10.3390/app10144985.
  • Xia, Z., F. Ju, and P. Du Plessis. 2010. “Heat Transfer and Stress Analysis of Coke Drum for a Complete Operating Cycle.” Journal of Pressure Vessel Technology 132 (5). doi:10.1115/1.4001208.
  • Yan, Z., Y. Zhang, J. Chen, and Z. Xia. 2015. “Statistical Method for the Fatigue Life Estimation of Coke Drums.” Engineering Failure Analysis 48: 259–271. doi:10.1016/j.engfailanal.2014.11.007.
  • Yun, D., D. Kim, M. Kim, S. G. Bae, J. W. Choi, H. B. Shim, T. Hong, D. Lee, and H. S. Park. 2021. “Field Measurements for Identification of Modal Parameters for high-rise Buildings under Construction or in Use.” Automation in Construction 121: 103446. doi:10.1016/j.autcon.2020.103446.
  • Zhang, Y., and Z. Xia. 2015. “Simplified Thermoelastoplastic Models for Determination of Global and Local Stress in Coke Drums.” Journal of Thermal Stresses 38 (1): 22–38. doi:10.1080/01495739.2014.976117.