761
Views
0
CrossRef citations to date
0
Altmetric
Building Structures and Materials

Lead the folding motion of the thick origami model under gravity

ORCID Icon &
Pages 2224-2236 | Received 18 Apr 2022, Accepted 04 Nov 2022, Published online: 16 Nov 2022

References

  • Alegria Mira, L., A. P. Thrall, and N. De Temmerman. 2014. “Deployable Scissor Arch for Transitional Shelters.” Automation in Construction 43: 123–131. doi:10.1016/j.autcon.2014.03.014.
  • Ario, I., M. Nakazawa, Y. Tanaka, I. Tanikura, S. Ono. 2013. “Development of a Prototype Deployable Bridge Based on Origami Skill.” Automation in Construction 32: 104–111. doi:10.1016/j.autcon.2013.01.012.
  • Bouguet, J.-Y. 2004. “Camera Calibration Toolbox for Matlab.” http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
  • Cai, J., Z. Qian, C. Jiang, J. Feng, Y. Xu. 2016. “Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami.” Journal of Mechanisms and Robotics 8 (6): 064502–064502–6. doi:10.1115/1.4034578.
  • Dudte, L. H., E. Vouga, T. Tachi, L. Mahadevan. 2016. “Programming Curvature Using Origami tessellations.” Nature Materials 15 (5): 583. doi:10.1038/NMAT4540.
  • Evans, A. A., J. L. Silverberg, and C. D. Santangelo. 2015. “Lattice Mechanics of Origami Tessellations.” Physical Review E 92 (1): 013205. doi:10.1103/PhysRevE.92.013205.
  • Filipov, E. T., K. Liu, T. Tachi, M. Schenk, and G. H. Paulino. 2017. “Bar and Hinge Models for Scalable Analysis of Origami.” International Journal of Solids and Structures 124: 26–45. doi:10.1016/j.ijsolstr.2017.05.028.
  • Filipov, E., T. Tachi, and G. Paulino. 2015. “Toward Optimization of Stiffness and Flexibility of Rigid, flat-foldable Origami Structures.” in The 6th International Meeting on Origami in Science, Mathematics and Education, Tokyo, Japan. doi:10.1090/MBK/095.2/04.
  • Gattas, J., and Z. You. 2016. “Design and Digital Fabrication of Folded Sandwich Structures.” Automation in Construction 63: 79–87. doi:10.1016/j.autcon.2015.12.002.
  • Grinham, J., S. Craig, D. E. Ingber, M. Bechthold. 2020. “Origami Microfluidics for Radiant Cooling with Small Temperature Differences in Buildings.” Applied Energy 277: 115610. doi:10.1016/j.apenergy.2020.115610.
  • Hoberman, C. S. 1988. “Reversibly Expandable three-dimensional Structure.” 1988, Google Patents. US4780344A, https://patents.google.com/patent/US4780344A/en
  • Hoberman, C. 2010. “Folding Structures Made of Thick Hinged Sheets.” 2010, Google Patents. US7794019B2, https://patents.google.com/patent/US7794019B2/en
  • Kawaguchi, K., X. Yang, and T. Sone. 2018. “Deployable 10m Arch and 2m Sphere.” Proceedings of IASS Annual Symposia, 2018: Transformables 2018 (14): 1–4. 2518-6582 (Online). https://www.ingentaconnect.com/contentone/iass/piass/2018/00002018/00000014/art00001
  • Klett, Y., and P. Middendorf. 2016. “Kinematic Analysis of Congruent Multilayer Tessellations.” Journal of Mechanisms and Robotics 8 (3): 034501–034501–7. doi:10.1115/1.4032203.
  • Koschitz, D. 2019. “Curved-crease Paperfolding Shell.” in: Proceedings of IASS Annual Symposia, Barcelona, Spain, Barcelona Symposium: Origami and Folded Systems, (8) https://congress.cimne.com/Formandforce2019/admin/files/fileabstract/a505.pdf
  • Le-Thanh, L., T. Le-Duc, H. Ngo-Minh, Q.-H. Nguyen, H. Nguyen-Xuan. 2021. “Optimal Design of an Origami-inspired Kinetic Façade by Balancing Composite Motion Optimization for Improving Daylight Performance and Energy Efficiency.” Energy 219: 119557. doi:10.1016/j.energy.2020.119557.
  • Liu, S., G. Lu, Y. Chen, Y. W. Leong. 2015. “Deformation of the Miura-ori Patterned Sheet.” International Journal of Mechanical Sciences 99: 130–142. doi:10.1016/j.ijmecsci.2015.05.009.
  • Liu, K., and G. Paulino. 2017. “Nonlinear Mechanics of non-rigid Origami: An Efficient Computational Approach.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473 (2206): 20170348. doi:10.1098/rspa.2017.0348.
  • Mathew, B., Bharatpatil, V., and Anilchamoli. 2021. “Compliant Mechanism and Origami Usage in Aerospace and Space Application.” in IOP Conference Series: Earth and Environmental Science, Online, India. IOP Publishing. doi:10.1088/1755-1315/775/1/012008.
  • Meloni, M., J. Cai, Q. Zhang, D. Sang-Hoon Lee, M. Li, R. Ma, T. E. Parashkevov, and J. Feng. 2021. “Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools.” Advanced Science 8 (13): 2000636. doi:10.1002/advs.202000636.
  • Miura, K., and S. Pellegrino. 2020. Forms and Concepts for Lightweight Structures. Cambridge: Cambridge University Press. Online. doi:10.1017/9781139048569.
  • Morgan, J., S. P. Magleby, and L. L. Howell. 2016. “An Approach to Designing origami-adapted Aerospace Mechanisms.” Journal of Mechanical Design 138 (5). doi:10.1115/1.4032973.
  • Peraza-Hernandez, E. A., D. J. Hartl, R. J. Malak Jr, D. C. Lagoudas. 2014. “Origami-inspired Active Structures: A Synthesis and Review.” Smart Materials and Structures 23 (9): 094001. doi:10.1088/0964-1726/23/9/094001.
  • Pérez-Piñero, E. 1961. “Estructura Reticular Estérea Plegable. N°0266801., in Oficina Española de Patentesy Marcas.” https://patentados.com/1961/estructura-reticular-esterea-plegable.1
  • Rogers, J., Y. Huang, O. G. Schmidt, D. H. Gracias. 2016. “Origami MEMS and NEMS.” MRS Bulletin 41 (2): 123–129. doi:10.1557/mrs.2016.2.
  • Saito, K., A. Tsukahara, and Y. Okabe. 2015. “New Deployable Structures Based on an Elastic Origami Model.” Journal of Mechanical Design 137 (2): 021402–021402–5. doi:10.1115/1.4029228.
  • Saito, K., A. Tsukahara, and Y. Okabe. 2016. “Designing of self-deploying Origami Structures Using Geometrically Misaligned Crease Patterns.” Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Science 472: 2185. doi:10.1098/rspa.2015.0235.
  • Schenk, M., and S. D. Guest. 2013. “Geometry of Miura-folded Metamaterials.” Proceedings of the National Academy of Sciences 110 (9): 3276–3281. doi:10.1073/pnas.1217998110.
  • Shigemune, H., S. Maeda, Y. Hara, N. Hosoya, S. Hashimoto. 2016. “Origami Robot: A self-folding Paper Robot with an Electrothermal Actuator Created by Printing.” IEEE/ASME Transactions on Mechanical Engineering 21 (6): 2746–2754. doi:10.1109/TMECH.2016.2593912.
  • Silverberg, J. L., A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, I. Cohen, et al. 2014. “Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials.” SCIENCE 345 (6197): 4. doi:10.1126/science.1252876.
  • Tachi, T. 2011. “Rigid-foldable Thick Origami.” Origami 5. https://origami.c.u-tokyo.ac.jp/~tachi/cg/ThickRigidOrigami_tachi_5OSME.pdf
  • Tachi, T., and T. C. Hull. 2017. “Self-foldability of Rigid Origami.” Journal of Mechanisms and Robotics 9 (2): 021008–021008–9. doi:10.1115/1.4035558.
  • Thrall, A. P., and C. P. Quaglia. 2014. “Accordion Shelters: A Historical Review of origami-like Deployable Shelters Developed by the US Military.” Engineering Structures 59: 686–692. doi:10.1016/j.engstruct.2013.11.009.
  • Wu, M., T. Zhang, P. Xiang, F. Guan. 2019. “Single-layer Deployable Truss Structure Driven by Elastic Components.” Journal of Aerospace Engineering 32 (2): 04018144. doi:10.1061/(ASCE)AS.1943-5525.0000977.
  • Xiang, X. M., G. Lu, and Z. You. 2020. “Energy Absorption of Origami Inspired Structures and Materials.” Thin-Walled Structures 157: 107130. doi:10.1016/j.tws.2020.107130.
  • Ye, K., and J. C. Ji. 2022. “An Origami Inspired quasi-zero Stiffness Vibration Isolator Using a Novel truss-spring Based Stack Miura-ori Structure.” Mechanical Systems and Signal Processing 165: 108383. doi:10.1016/j.ymssp.2021.108383.
  • Zhang, T., and K. Kawaguchi. 2021. “Folding Analysis for Thick Origami with Kinematic Frame Models Concerning Gravity.” Automation in Construction 127: 103691. doi:10.1016/j.autcon.2021.103691.
  • Zhang, T., K. Kawaguchi, and M. Wu. 2018. “A Folding Analysis Method for Origami Based on the Frame with Kinematic Indeterminacy.” International Journal of Mechanical Sciences 146: 234–248. doi:10.1016/j.ijmecsci.2018.07.036.
  • Zhang, T., K. Kawaguchi, and M. Wu. 2019a. “Optimization of Frame Structures with Kinematical Indeterminacy for Optimum Folding.” Journal of Engineering Mechanics 145 (9): 04019072. doi:10.1061/(ASCE)EM.1943-7889.0001646.
  • Zhang, T., K. Kawaguchi, and M. Wu. 2019b. “Concept and Preliminary Analysis of Novel Movable Structural System for cable-stayed Footbridge.” Journal of Bridge Engineering 24 (4): 04019021. doi:10.1061/(ASCE)BE.1943-5592.0001378.
  • Zhang, T., K. Kawaguchi, and M. Wu. 2022. “Improved Approximation Approach for Folding Analyses of Structures with Kinematic Indeterminacy.” Journal of Engineering Mechanics 148 (5): 04022021. doi:10.1061/(ASCE)EM.1943-7889.0002106.
  • Zhang, Q., X. Wang, D. S.-H. Lee, J. Cai, Z. Ren, J. Feng. 2021. “Development of Kinetic Origami Canopy Using Arc Miura Folding Patterns.” Journal of Building Engineering 43: 103116. doi:10.1016/j.jobe.2021.103116.
  • Zhang, T., M. Wu, and F. Guan. 2016. “Deployment Study on a single-layer Deployable Truss Structure Driven by Elastic Components.” Journal of the International Association for Shell and Spatial Structures 57 (4): 10. doi:10.20898/j.iass.2016.190.855.