412
Views
0
CrossRef citations to date
0
Altmetric
Environmental Engineering

The performance of different unsteady Reynolds-averaged Navier-Stokes models mined by Fuzzy C-means algorithm with Fourier coefficient-based distance on the constructed vortex structures around a single building

, , , &
Pages 294-312 | Received 17 Nov 2022, Accepted 14 Jul 2023, Published online: 31 Jul 2023

References

  • Agrawal, R., C. Faloutsos, and A. Swami.1993. “Efficient Similarity Search in Sequence Databases”, In Foundations of Data Organization and Algorithms, edited by, LometD. B. (Vol. 730., p. 69–84). Berlin, Heidelberg. https://doi.org/10.1007/3-540-57301-1_5.
  • Aly, A. M., and G. Z. Hamzeh. 2021. “Peak Pressures on Low Rise Buildings: CFD with LES versus Full Scale and Wind Tunnel Measurements.” Wind and Structures, an International Journal 30 (1): 99–117. https://doi.org/10.12989/was.2020.30.1.099.
  • Baetke, F., H. Werner, and H. Wengle. 1990. “Numerical Simulation of Turbulent Flow Over Surface Mounted Obstacles with Sharp Edges and Corners.” Journal of Wind Engineering and Industrial Aerodynamics 35:129–147. https://doi.org/10.1016/0167-6105(90)90213-V.
  • Baker, C. J. 2007. “Wind Engineering—Past, Present and Future.” Journal of Wind Engineering & Industrial Aerodynamics 95 (9–11): 843–870. https://doi.org/10.1016/j.jweia.2007.01.011.
  • Bezdek, J. C., R. Ehrlich, and W. Full. 1984. “FCM: The Fuzzy C -Means Clustering Algorithm.” Computers & Geosciences 10 (2–3): 191–203. https://doi.org/10.1016/0098-3004(84)90020-7.
  • Blocken, B. 2014. “50 Years of Computational Wind Engineering: Past, Present and Future.” Journal of Wind Engineering and Industrial Aerodynamics 129:69–102. https://doi.org/10.1016/j.jweia.2014.03.008.
  • Blocken, B. 2015. “Computational Fluid Dynamics for Urban Physics: Importance, Scales, Possibilities, Limitations and ten Tips and Tricks Towards Accurate and Reliable Simulations.” Building and Environment 91:219–245. https://doi.org/10.1016/j.buildenv.2015.02.015.
  • Blocken, B. 2018. “LES Over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion?” Building Simulation 11 (5): 821–870. https://doi.org/10.1007/s12273-018-0459-3.
  • Blocken, B., T. Stathopoulos, and J. Carmeliet. 2007. ““CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems.” Atmospheric Environment” 41 (2): 238–252. https://doi.org/10.1016/j.atmosenv.2006.08.019.
  • Christopher, N., J. M. F. Peter, M. J. Kloker, and J. P. Hickey. 2020. “DNS of Turbulent Flat-Plate Flow with Transpiration Cooling.” International Journal of Heat and Mass Transfer 157:119972. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119972.
  • Fan, D. S., J. L. Xu, M. X. Yao, and J. P. Hickey. 2019. “On the Detection of Internal Interfacial Layers in Turbulent Flows.” Journal of Fluid Mechanics 872:198–217. https://doi.org/10.1017/jfm.2019.343.
  • Hooff, T. V., B. Blocken, and Y. Tominaga. 2017. “On the Accuracy of CFD Simulations of Cross-Ventilation Flows for a Generic Isolated Building: Comparison of RANS, LES and Experiments.” Building and Environment 114:148–165. https://doi.org/10.1016/j.buildenv.2016.12.019.
  • Huang, B., Y. Zhao, and G. Y. Wang. 2014. “Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows.” Computers & Fluids 92:113–124. https://doi.org/10.1016/j.compfluid.2013.12.024.
  • Kahsay, M. T., G. T. Bitsuamlak, and F. Tariku. 2019. “CFD Simulation of External CHTC on a High-Rise Building with and without Façade Appurtenances.” Building and Environment 165:106350. https://doi.org/10.1016/j.buildenv.2019.106350.
  • Kurppa, M., A. Hellsten, M. Auvinen, S. Raasch, T. Vesala, and L. Järvi. 2018. “Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective.” Atmosphere 9 (2): 65. https://doi.org/10.3390/atmos9020065.
  • Launder, B. E., and D. B. Spalding. 1974. “The Numerical Computation of Turbulent Flows.” Computer Methods in Applied Mechanics and Engineering 3 (2): 269–289. https://doi.org/10.1016/0045-7825(74)90029-2.
  • Law, S. S., Q. S. Yang, and Y. L. Fang. 2007. “Experimental Studies on Possible Vortex Shedding in a Suspension Bridge-Part I-Structural Dynamic Characteristics and Analysis Model.” Wind and Structures, an International Journal 10 (6): 543–554. https://doi.org/10.12989/was.2007.10.6.543.
  • Lew, A. J., G. C. Buscaglia, and P. M. Carr. 2007. “A Note on the Numerical Treatment of the K-Epsilon Turbulence Model.” International Journal of Computational Fluid Dynamic 14 (3): 201–209. https://doi.org/10.1080/10618560108940724.
  • Li, X. X., R. Britter, and L. K. Norford. 2016. “Effect of Stable Stratification on Dispersion within Urban Street Canyons: A Large-Eddy Simulation.” Atmospheric Environment 144:47–59. https://doi.org/10.1016/j.atmosenv.2016.08.069.
  • Li, C. Y., Z. S. Chen, T. K. T. Tse, A. U. Weerasuriya, X. L. Zhang, Y. F. Fu, and X. S. Lin. 2021. “A Parametric and Feasibility Study for Data Sampling of the Dynamic Mode Decomposition: Spectral Insights and Further Explorations.” Physics of Fluids 34 (3): 035102. https://doi.org/10.1063/5.0082640.
  • Li, C. Y., Z. S. Chen, T. K. T. Tse, A. U. Weerasuriya, X. L. Zhang, Y. F. Fu, and X. S. Lin. 2022. “A Parametric and Feasibility Study for Data Sampling of the Dynamic Mode Decomposition: Range, Resolution, and Universal Convergence States.” Nonlinear Dynamics 107 (4): 3683–3707. https://doi.org/10.1007/s11071-021-07167-8.
  • Li, C. Y., T. K. T. Tse, and G. Hu. 2020. “Dynamic Mode Decomposition on Pressure Flow Field Analysis: Flow Field Reconstruction, Accuracy, and Practical Significance.” Journal of Wind Engineering & Industrial Aerodynamics 205:104278. https://doi.org/10.1016/j.jweia.2020.104278.
  • Llaguno-Munitxa, M., and E. Bou-Zeid. 2018. “Shaping Buildings to Promote Street Ventilation: A Large-Eddy Simulation Study.” Urban Climate 26:76–94. https://doi.org/10.1016/j.uclim.2018.08.006.
  • Longo, R., M. Ferrarotti, C. G. Sánchez, M. Derudi, and A. Parente. 2017. “Advanced Turbulence Models and Boundary Conditions for Flows Around Different Configurations of Ground-Mounted Buildings.” Journal of Wind Engineering and Industrial Aerodynamics 167:160–182. https://doi.org/10.1016/j.jweia.2017.04.015.
  • Meng, T., and K. Hibi. 1998. “Turbulent Measurements of the Flow Field Around a High-Rise Building.” Journal of Wind Engineering 1998 (76): 55–64. in Japanese. https://doi.org/10.5359/jawe.1998.76_55.
  • Menter, F. R., R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Völker. 2006. “A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation.” Journal of Turbomachinery 128 (3): 413–422. https://doi.org/10.1115/1.2184352.
  • Meroney, R., R. Ohba, B. Leitl, H. Kondo, D. Grawe, and Y. Tominaga. 2016. “Review of CFD Guidelines for Dispersion Modeling.” Fluids 1 (2): 14. https://doi.org/10.3390/fluids1020014.
  • Moen, A., L. Mauri, and V. D. Narasimhamurthy. 2019. “Comparison of K-ɛ Models in Gaseous Release and Dispersion Simulations Using the CFD Code FLACS.” Process Safety and Environmental Protection 130:306–316. https://doi.org/10.1016/j.psep.2019.08.016.
  • Mohamed, M. A., and D. H. Wood. 2017. “Modifications to Reynolds-Averaged Navier-Stokes Turbulence Models for the Wind Flow Over Buildings.” International Journal of Sustainable Energy 36 (3): 225–241. https://doi.org/10.1080/14786451.2015.1014903.
  • Moonen, P., T. Defraeye, V. Dorer, B. Blocken, and J. Carmeliet. 2012. “Urban Physics: Effect of the Micro-Climate on Comfort, Health and Energy Demand.” Frontiers of Architectural Research 1 (3): 197–228. https://doi.org/10.1016/j.foar.2012.05.002.
  • Nanda, S. 2016. Flow Past a Square Prism: A Numerical Study. Delft, The Netherlands: Technical University of Delft. http://resolver.tudelft.nl/uuid:ba8daa3d-8fb8-4900-8e44-4f6b7c2f8754.
  • Okafor, C. 2018. “Finite Element Analysis of Vortex Induced Responses of Multistory Rectangular Building.” European Journal of Engineering Research and Science 3 (2): 35–42. https://doi.org/10.24018/ejeng.2018.3.2.612.
  • Park, S. J., J. J. Kim, W., Choi, Kim, E. R., Song, C. K., and Pardyjak, E. R. 2020. “Flow Characteristics Around Step-Up Street Canyons with Various Building Aspect Ratios.” Boundary-Layer Meteorology 174 (3): 411–431. https://doi.org/10.1007/s10546-019-00494-9.
  • Qureshi, M. Z. I., and A. L. S. Chan. 2020. “Influence of Eddy Viscosity Parameterisation on the Characteristics of Turbulence and Wind Flow: Assessment of Steady RANS Turbulence Model.” Journal of Building Engineering 27:100934. https://doi.org/10.1016/j.jobe.2019.100934.
  • Ricci, A., I. Kalkman, B. Blocken, M. Burlando, and M. P. Repetto. 2020. “Impact of Turbulence Models and Roughness Height in 3D Steady RANS Simulations of Wind Flow in an Urban Environment.” Building and Environment 171:106617. https://doi.org/10.1016/j.buildenv.2019.106617.
  • Rong, L., P. V. Nielsen, B. Bjerg, and G. Q. Zhang. 2016. “Summary of Best Guidelines and Validation of CFD Modeling in Livestock Buildings to Ensure Prediction Quality.” Computers and Electronics in Agriculture 121:180–190. https://doi.org/10.1016/j.compag.2015.12.005.
  • Shao, J., J. Liu, and J. Zhao. 2012. “Evaluation of Various Non-Linear K-ɛ Models for Predicting Wind Flow Around an Isolated High-Rise Building within the Surface Boundary Layer.” Building Environment 57:145–155. https://doi.org/10.1016/j.buildenv.2012.04.018.
  • Shih, T. H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. “A New K-ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows.” Compurers Fluids 24 (3): 227–238. https://doi.org/10.1016/0045-7930(94)00032-T.
  • Shirzadi, M., P. A. Mirzaei, and M. Naghashzadegan. 2017. “Improvement of K-Epsilon Turbulence Model for CFD Simulation of Atmospheric Boundary Layer Around a High-Rise Building Using Stochastic Optimization and Monte Carlo Sampling Technique.” Journal of Wind Engineering and Industrial Aerodynamics 171:366–379. https://doi.org/10.1016/j.jweia.2017.10.005.
  • Solari, G. 2007. “The International Association for Wind Engineering (IAWE): Progress and Prospects.” Journal of Wind Engineering and Industrial Aerodynamics 95 (9–11): 813–842. https://doi.org/10.1016/j.jweia.2007.01.010.
  • Sun, H., S. Wang, and Q. Jiang. 2004. “FCM-Based Model Selection Algorithms for Determining the Number of Clusters.” Pattern Recognition 37 (10): 2027–2037. https://doi.org/10.1016/j.patcog.2004.03.012.
  • Toja-Silva, F., C. Peralta, O. Lopez-Garcia, J. Navarro, and I. Cruz. 2015. “Roof Region Dependent Wind Potential Assessment with Different RANS Turbulence Models.” Journal of Wind Engineering and Industrial Aerodynamics 142:258–271. https://doi.org/10.1016/j.jweia.2015.04.012.
  • Tolias, I. C., N. Koutsourakis, D. Hertwig, G. C. Efthimiou, A. G. Venetsanos, and J. G. Bartzis. 2018. “Large Eddy Simulation Study on the Structure of Turbulent Flow in a Complex City.” Journal of Wind Engineering and Industrial Aerodynamics 177:101–116. https://doi.org/10.1016/j.jweia.2018.03.017.
  • Tominaga, Y. 2015. “Flow Around a High-Rise Building Using Steady and Unsteady RANS CFD: Effect of Large-Scale Fluctuations on the Velocity Statistics.” Journal of Wind Engineering and Industrial Aerodynamics 142:93–103. https://doi.org/10.1016/j.jweia.2015.03.013.
  • Tominaga, Y., A. Mochida, S. Murakami, and S. Sawaki. 2008. “Comparison of Various Revised K-ɛ Models and LES Applied to Flow Around a High-Rise Building Model with 1: 1: 2 Shape Placed within the Surface Boundary Layer.” Journal of Wind Engineering and Industrial Aerodynamics 96 (4): 389–411. https://doi.org/10.1016/j.jweia.2008.01.004.
  • Tominaga, Y., and T. Stathopoulos. 2013. “CFD Simulation of Near-Field Pollutant Dispersion in the Urban Environment: A Review of Current Modeling Techniques.” Atmospheric Environment 79:716–730. https://doi.org/10.1016/j.atmosenv.2013.07.028.
  • Tominaga, Y., and T. Stathopoulos. 2016. “Ten Questions Concerning Modeling of Near-Field Pollutant Dispersion in the Built Environment.” Building and Environment 105:390–402. https://doi.org/10.1016/j.buildenv.2016.06.027.
  • Tsinober, A., L. Shtilman, and H. Vaisburd. 1997. “A Study of Properties of Vortex Stretching and Enstrophy Generation in Numerical and Laboratory Turbulence.” Fluid Dynamics Research 21 (6): 477–494. https://doi.org/10.1016/S0169-5983(97)00022-1.
  • Wang, W. W., E. Ng, C. Yuan, and S. Raasch. 2017. “Large-Eddy Simulations of Ventilation for Thermal Comfort-A Parametric Study of Generic Urban Configurations with Perpendicular Approaching Winds.” Urban Climate 20:202–227. https://doi.org/10.1016/j.uclim.2017.04.007.
  • Wijesooriya, K., D. Mohotti, A. Amin, and K. Chauhan. 2020. “An Uncoupled Fluid Structure Interaction Method in the Assessment of Structural Responses of Tall Buildings.” Structures 25:448–462. https://doi.org/10.1016/j.istruc.2020.03.031.
  • Wu, Y., and J. L. Niu. 2017. “Numerical Study of Inter-Building Dispersion in Residential Environments: Prediction Methods Evaluation and Infectious Risk Assessment.” Building and Environment 115:199–214. https://doi.org/10.1016/j.buildenv.2017.01.029.
  • Xu, P., M. Babanezhad, H. Yarmand, and A. Marjani. 2020. “Flow Visualization and Analysis of Thermal Distribution for the Nanofluid by the Integration of Fuzzy C-Means Clustering ANFIS Structure and CFD Methods.” Journal of Visualization 23 (1): 97–110. https://doi.org/10.1007/s12650-019-00614-0.
  • Yakhot, V., and S. A. Orszag. 1986. ““Renormalization Group Analysis of Turbulence I. Basic theory.” Journal of Scientific Computing 1 (1): 3–51. https://doi.org/10.1007/BF01061452.
  • Yang, X., Y. Zhang, J. Hang, Y. Y. Lin, M. Mattsson, M. Sandberg, M. Zhang, and K. Wang. 2020. “Integrated Assessment of Indoor and Outdoor Ventilation in Street Canyons with Naturally-Ventilated Buildings by Various Ventilation Indexes.” Building and Environment 169:106528. https://doi.org/10.1016/j.buildenv.2019.106528.
  • Yoshida, T., T. Takemi, and M. Horiguchi. 2018. “Large-Eddy-Simulation Study of the Effects of Building-Height Variability on Turbulent Flows Over an Actual Urban Area.” Boundary-Layer Meteorol 168 (1): 127–153. https://doi.org/10.1007/s10546-018-0344-8.
  • Yousef Mousa, W. A., W. Lang, T. Auer, and W. A. Yousef. 2017. “A Pattern Recognition Approach for Modeling the Air Change Rates in Naturally Ventilated Buildings from Limited Steady-State CFD Simulations.” Energy and Buildings 155:54–65. https://doi.org/10.1016/j.enbuild.2017.09.016.
  • Yu, H. S., and J. Thé. 2016. “Validation and Optimization of SST K-ɷ Turbulence Model for Pollutant Dispersion within a Building Array.” Atmospheric Environment 145:225–238. https://doi.org/10.1016/j.atmosenv.2016.09.043.
  • Zhang, X., A. U. Weerasuriya, B. Lu, K. T. Tse, C. H. Liu, and Y. Tamura. 2020. “Pedestrian-Level Wind Environment Near a Super-Tall Building with Unconventional Configurations in a Regular Urban Area.” Building Simulation 13 (2): 439–456. https://doi.org/10.1007/s12273-019-0588-3.
  • Zhong, H. Y., D. D. Zhang, D. Liu, F. Y. Zhao, Y. G. Li, and H. Q. Wang. 2018. “Two-Dimensional Numerical Simulation of Wind Driven Ventilation Across a Building Enclosure with Two Free Apertures on the Rear Side: Vortex Shedding and ‘Pumping Flow mechanism’.” Journal of Wind Engineering and Industrial Aerodynamics 179:449–462. https://doi.org/10.1016/j.jweia.2018.07.002.