495
Views
1
CrossRef citations to date
0
Altmetric
Building structures and materials

Experimental study of lightweight concrete prepared from super absorbent polymers (SAPs) and glass fibers (GF)

, , , , , & show all
Pages 994-1006 | Received 03 Apr 2023, Accepted 06 Sep 2023, Published online: 14 Sep 2023

References

  • Alnahhal, A. M., U. J. Alengaram, S. Yusoff, P. Darvish, K. Srinivas, and M. Sumesh. 2022. “Engineering Performance of Sustainable Geopolymer Foamed and Non-Foamed Concretes.” Construction and Building Materials 316:125601. https://doi.org/10.1016/j.conbuildmat.2021.125601.
  • American Society for Testing Materials. 2017. ASTM C332-17: Standard Specification for Lightweight Aggregates for Insulating Concrete. Philadephia PA.
  • American Society for Testing Materials. 2020a. ASTM C109/C109M-20b: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-In. or [50 Mm] Cube Specimens). Philadephia PA.
  • American Society for Testing Materials. 2020b. ASTM C1585: Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. Philadephia PA.
  • American Society for Testing Materials. 2020c. ASTM C348 - 20: Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. Philadephia PA.
  • American Society for Testing Materials. 2021. ASTM C518 - 21: Standard Test Methods for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. Philadephia PA.
  • American Society for Testing Materials. 2022. ASTM C20-00: Standard Specification for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. Philadephia PA.
  • AzariJafari, H., A. Kazemian, M. Rahimi, and A. Yahia. 2016. “Effects of Pre-Soaked Super Absorbent Polymers on Fresh and Hardened Properties of Self-Consolidating Lightweight Concrete.” Construction and Building Materials 113:215–220. https://doi.org/10.1016/j.conbuildmat.2016.03.010.
  • Barluenga, G., and F. Hernández-Olivares. 2007. “Cracking Control of Concretes Modified with Short AR-Glass Fibers at Early Age. Experimental Results on Standard Concrete and SCC.” Cement and Concrete Research 37 (12): 1624–1638. https://doi.org/10.1016/j.cemconres.2007.08.019.
  • Beiranvandi, M., N. Akbari, A. Ahmadi, H. Mumivand, and F. Nazarian. 2022. “Biochar and Super Absorbent Polymer Improved Growth, Yield, and Phytochemical Characteristics of Satureja Rechingeri Jamzad in Water-Deficiency Conditions.” Industrial Crops and Products 183:114959. https://doi.org/10.1016/j.indcrop.2022.114959.
  • Bencardino, F., A. Cecchi, M. Franceschi, M. Nisticò, L. Ombres, and S. Verre. 2019. “Structural Behavior of Small-Scale Masonry Panel with Fiber Reinforced Mortar Under Compressive Load.” Key Engineering Materials 817:472–477. https://doi.org/10.4028/www.scientific.net/KEM.817.472.
  • Beushausen, H., M. Gillmer, and M. Alexander. 2014. “The Influence of Superabsorbent Polymers on Strength and Durability Properties of Blended Cement Mortars.” Cement and Concrete Composites 52:73–80. https://doi.org/10.1016/j.cemconcomp.2014.03.008.
  • Centonze, G., M. Leone, and M. A. Aiello. 2012. “Steel Fibers from Waste Tires as Reinforcement in Concrete: A Mechanical Characterization.” Construction and Building Materials 36:46–57. https://doi.org/10.1016/j.conbuildmat.2012.04.088.
  • Chen, H., P. Wang, J. Pan, A. S. Lawi, and Y. Zhu. 2021. “Effect of Alkali-Resistant Glass Fiber and Silica Fume on Mechanical and Shrinkage Properties of Cement-Based Mortars.” Construction and Building Materials 307:125054. https://doi.org/10.1016/j.conbuildmat.2021.125054.
  • Cong, X., T. Qiu, J. Xu, X. Liu, L. Wang, Y. Wang, C. Chen, L. Zhao, C. Xing, and Y. Tan. 2022. “Study on the Effectiveness of Fibre Reinforcement on the Engineering Performance of Foamed Concrete.” Case Studies in Construction Materials 16:e01015. https://doi.org/10.1016/j.cscm.2022.e01015.
  • Cunha, F. G., Z. L. M. Sampaio, and A. E. Martinelli. 2021. “Fiber-Reinforced Lightweight Concrete Formulated Using Multiple Residues.” Construction and Building Materials 308:125035. https://doi.org/10.1016/j.conbuildmat.2021.125035.
  • Dai, L., Z. Zhu, C. Zhang, and D. Zhu. 2023. “Experimental Study on the Influence of Glass Fiber Reinforced Concrete Isolation Layer on the Seismic Dynamic Response of Tunnels.” Case Studies in Construction Materials 19:e02303. https://doi.org/10.1016/j.cscm.2023.e02303.
  • Farzanian, K., K. Pimenta Teixeira, I. Perdigão Rocha, L. De Sa Carneiro, and A. Ghahremaninezhad. 2016. “The Mechanical Strength, Degree of Hydration, and Electrical Resistivity of Cement Pastes Modified with Superabsorbent Polymers.” Construction and Building Materials 109:156–165. https://doi.org/10.1016/j.conbuildmat.2015.12.082.
  • Fenu, L., D. Forni, and E. Cadoni. 2016. “Dynamic Behaviour of Cement Mortars Reinforced with Glass and Basalt Fibres, Composites Part B.” Composites Part B Engineering 92:142–150. https://doi.org/10.1016/j.compositesb.2016.02.035.
  • Fernando, T. N., S. A. Ariadurai, C. K. Disanayaka, S. Kulathunge, and A. G. B. Aruggoda. 2017. “Development of Radiation Grafted Super Absorbent Polymers for Agricultural Applications.” Energy Procedia 127:163–177. https://doi.org/10.1016/j.egypro.2017.08.106.
  • Gencel, O., M. Nodehi, O. Yavuz Bayraktar, G. Kaplan, A. Benli, A. Gholampour, and T. Ozbakkaloglu. 2022. “Basalt Fiber-Reinforced Foam Concrete Containing Silica Fume: An Experimental Study.” Construction and Building Materials 326:126861. https://doi.org/10.1016/j.conbuildmat.2022.126861.
  • Gencel, O., O. Yavuz Bayraktar, G. Kaplan, O. Arslan, M. Nodehi, A. Benli, A. Gholampour, and T. Ozbakkaloglu. 2022. “Lightweight Foam Concrete Containing Expanded Perlite and Glass Sand: Physico-Mechanical, Durability, and Insulation Properties.” Construction and Building Materials 320:126187. https://doi.org/10.1016/j.conbuildmat.2021.126187.
  • Gencel, O., O. Yavuz Bayraktar, G. Kaplan, A. Benli, G. Martínez-Barrera, W. Brostow, M. Tek, and B. Bodur. 2021. “Characteristics of Hemp Fibre Reinforced Foam Concretes with Fly Ash and Taguchi Optimization.” Construction and Building Materials 294:123607. https://doi.org/10.1016/j.conbuildmat.2021.123607.
  • He, T., R. Xu, Y. Da, R. Yang, C. Chen, and Y. Liu. 2019. “Experimental Study of High-Performance Autoclaved Aerated Concrete Produced with Recycled Wood Fibre and Rubber Powder.” Journal of Cleaner Production 234:559–567. https://doi.org/10.1016/j.jclepro.2019.06.276.
  • Hu, M., J. Guo, J. Du, Z. Liu, P. Li, X. Ren, and Y. Feng. 2019. “Development of Ca2+-based, Ion-Responsive Superabsorbent Hydrogel for Cement Applications: Self-Healing and Compressive Strength.” Journal of Colloid and Interface Science 538:397–403. https://doi.org/10.1016/j.jcis.2018.12.004.
  • Jensen, O. M., and P. F. Hansen. 2002. “Water-Entrained Cement-Based Materials: II.” Experimental Observations, Cement and Concrete Research 32 (6): 973–978. https://doi.org/10.1016/S0008-8846(02)00737-8.
  • Ji, B.-Y., C.-P. Zhao, Y. Wu, W. Han, J.-Q. Song, and B. Wen-Bo. 2022. “Effects of Different Concentrations of Super-Absorbent Polymer on Soil Structure and Hydro-Physical Properties Following Continuous Wetting and Drying Cycles.” Journal of Integrative Agriculture 21 (11): 3368–3381. https://doi.org/10.1016/j.jia.2022.08.065.
  • Jiang, T., Y. Wang, S. Shi, N. Yuan, X. Wu, D. Shi, K. Sun, Y. Zhao, W. Li, and J. Yu. 2022. “Study on Compressive Strength of Lightweight Concrete Filled with Cement-Reinforced Epoxy Macrospheres and Basalt Fibers.” Structures 44:1347–1355. https://doi.org/10.1016/j.istruc.2022.08.056.
  • Justs, J., M. Wyrzykowski, D. Bajare, and P. Lura. 2015. “Internal Curing by Superabsorbent Polymers in Ultra-High Performance Concrete.” Cement and Concrete Research 76:82–90. https://doi.org/10.1016/j.cemconres.2015.05.005.
  • Kim, E., K. Kim, and O. Song. 2020. “Properties of Basalt-Fiber Reinforced Foam Glass.” Journal of Asian Ceramic Societies 8 (1): 170–175. https://doi.org/10.1080/21870764.2020.1718858.
  • Liu, J., N. Farzadnia, K. H. Khayat, and C. Shi. 2021. “Effects of SAP Characteristics on Internal Curing of UHPC Matrix.” Construction and Building Materials 280:122530. https://doi.org/10.1016/j.conbuildmat.2021.122530.
  • Liu, J., N. Farzadnia, and C. Shi. 2021. “Microstructural and Micromechanical Characteristics of Ultra-High Performance Concrete with Superabsorbent Polymer (SAP.” Cement and Concrete Research 149:106560. https://doi.org/10.1016/j.cemconres.2021.106560.
  • Liu, P., Z. Wu, X. Ge, and X. Yang. 2019. “Hydrothermal Synthesis and Microwave-Assisted Activation of Starch-Derived Carbons as an Effective Adsorbent for Naphthalene Removal.” RSC Advances 9 (21): 11696–11706. https://doi.org/10.1039/C9RA01386E.
  • Małek, M., M. Jackowski, W. Łasica, and M. Kadela. 2021. “Influence of Polypropylene, Glass and Steel Fiber on the Thermal Properties of Concrete.” Materials 14 (8): 1888. https://doi.org/10.3390/ma14081888.
  • Mechtcherine, V.; D. Dudziak; S. Hempel, 2009. “Mitigating Early Age Shrinkage of Concrete by Using Super Absorbent Polymers.” In 8th International Conference on Creep, shrinkage and durability mechanics of concrete and concrete structures-CONCREEP-8, Japan.
  • Merino, S., C. Martín, K. Kostarelos, M. Prato, and E. Vázquez. 2015. “Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery.” Agricultural Science & Technology Nano 9 (5): 4686–4697. https://doi.org/10.1021/acsnano.5b01433.
  • Mirza, F. A., and P. Soroushian. 2002. “Effects of Alkali-Resistant Glass Fiber Reinforcement on Crack and Temperature Resistance of Lightweight Concrete.” Cement and Concrete Composites 24 (2): 223–227. https://doi.org/10.1016/S0958-9465(01)00038-5.
  • Nagy, B., S. G. Nehme, and D. Szagri. 2015. “Thermal Properties and Modeling of Fiber Reinforced Concretes.” Energy Procedia 78:2742–2747. https://doi.org/10.1016/j.egypro.2015.11.616.
  • Newman, J., and P. Owens. 2003. “Properties of Lightweight Concrete.” In Advanced Concrete Technology, edited by J. Newman and B. S. Choo, 3–29. Oxford: Butterworth-Heinemann. https://doi.org/10.1016/B978-075065686-3/50288-3.
  • Nodehi, M., and S. E. Nodehi. 2021. “Ultra High Performance Concrete (UHPC): Reactive Powder Concrete, Slurry Infiltrated Fiber Concrete and Superabsorbent Polymer Concrete.” Innovative Infrastructure Solutions 7 (1): 39. https://doi.org/10.1007/s41062-021-00641-7.
  • Ouattara Coumoin, C., F. Wang, J. Yang, and Z. Liu. 2019. “Effect of SAP on Properties of High Performance Concrete Under Marine Wetting and Drying Cycles.” Journal Wuhan University of Technology, Materials Science Edition 34 (5): 1136–1142. https://doi.org/10.1007/s11595-019-2170-3.
  • Panesar, D. K. 2013. “Cellular Concrete Properties and the Effect of Synthetic and Protein Foaming Agents.” Construction and Building Materials 44:575–584. https://doi.org/10.1016/j.conbuildmat.2013.03.024.
  • Park, B., and Y. C. Choi. 2018. “Self-Healing Capability of Cementitious Materials with Crystalline Admixtures and Super Absorbent Polymers (SAPs).” Construction and Building Materials 189:1054–1066. https://doi.org/10.1016/j.conbuildmat.2018.09.061.
  • Pehlivanlı, Z. O., İ. Uzun, Z. P. Yücel, and İ. Demir. 2016. “The Effect of Different Fiber Reinforcement on the Thermal and Mechanical Properties of Autoclaved Aerated Concrete.” Construction and Building Materials 112:325–330. https://doi.org/10.1016/j.conbuildmat.2016.02.223.
  • Pourjavadi, A., S. M. Fakoorpoor, P. Hosseini, and A. Khaloo. 2013. “Interactions Between Superabsorbent Polymers and Cement-Based Composites Incorporating Colloidal Silica Nanoparticles.” Cement and Concrete Composites 37:196–204. https://doi.org/10.1016/j.cemconcomp.2012.10.005.
  • Rutkevičius, M., S. K. Munusami, Z. Watson, A. D. Field, M. Salt, S. D. Stoyanov, J. Petkov, G. H. Mehl, and V. N. Paunov. 2012. “Fabrication of Novel Lightweight Composites by a Hydrogel Templating Technique.” Materials Research Bulletin 47 (4): 980–986. https://doi.org/10.1016/j.materresbull.2012.01.014.
  • Samarakoon, S. M. S. M. K., P. Ruben, J. Wie Pedersen, and L. Evangelista. 2019. “Mechanical Performance of Concrete Made of Steel Fibers from Tire Waste.” Case Studies in Construction Materials 11:e00259. https://doi.org/10.1016/j.cscm.2019.e00259.
  • Senff, L., R. C. E. Modolo, G. Ascensão, D. Hotza, V. M. Ferreira, and J. A. Labrincha. 2015. “Development of Mortars Containing Superabsorbent Polymer.” Construction and Building Materials 95:575–584. https://doi.org/10.1016/j.conbuildmat.2015.07.173.
  • Söylev, T. A., and T. Özturan. 2014. “Durability, Physical and Mechanical Properties of Fiber-Reinforced Concretes at Low-Volume Fraction.” Construction and Building Materials 73:67–75. https://doi.org/10.1016/j.conbuildmat.2014.09.058.
  • Tally, M., and Y. Atassi. 2015. “Optimized Synthesis and Swelling Properties of a pH-Sensitive Semi-IPN Superabsorbent Polymer Based on Sodium Alginate-G-Poly(acrylic Acid-Co-Acrylamide) and Polyvinylpyrrolidone and Obtained via Microwave Irradiation.” Journal of Polymer Research 22 (9): 181. https://doi.org/10.1007/s10965-015-0822-3.
  • Thai Industrial Standards Institute. 2013. TIS No. 2601-2556: Cellular Lightweight Concrete Blocks. Bangkok.
  • Thakur, S., S. Pandey, and O. A. Arotiba. 2016. “Development of a Sodium Alginate-Based Organic/Inorganic Superabsorbent Composite Hydrogel for Adsorption of Methylene Blue.” Carbohydrate Polymers 153:34–46. https://doi.org/10.1016/j.carbpol.2016.06.104.
  • Thompson, B. R., T. S. Horozov, S. D. Stoyanov, and V. N. Paunov. 2018. “Hierarchically Porous Composites Fabricated by Hydrogel Templating and Viscous Trapping Techniques.” Materials & Design 137:384–393. https://doi.org/10.1016/j.matdes.2017.10.046.
  • Wang, J. Y., D. Snoeck, S. Van Vlierberghe, W. Verstraete, and N. De Belie. 2014. “Application of Hydrogel Encapsulated Carbonate Precipitating Bacteria for Approaching a Realistic Self-Healing in Concrete.” Construction and Building Materials 68:110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018.
  • Wang, L., S. Nagarajaiah, W. Shi, and Y. Zhou. 2020. “Study on Adaptive-Passive Eddy Current Pendulum Tuned Mass Damper for Wind-Induced Vibration Control.” The Structural Design of Tall & Special Buildings 29 (15): e1793. https://doi.org/10.1002/tal.1793.
  • Wang, L., S. Nagarajaiah, W. Shi, and Y. Zhou. 2021. “Semi-Active Control of Walking-Induced Vibrations in Bridges Using Adaptive Tuned Mass Damper Considering Human-Structure-Interaction.” Engineering Structures 244:112743. https://doi.org/10.1016/j.engstruct.2021.112743.
  • Wang, L., S. Nagarajaiah, W. Shi, and Y. Zhou. 2022. “Seismic Performance Improvement of Base-Isolated Structures Using a Semi-Active Tuned Mass Damper.” Engineering Structures 271:114963. https://doi.org/10.1016/j.engstruct.2022.114963.
  • Wang, L., S. Nagarajaiah, Y. Zhou, and W. Shi. 2023. “Experimental Study on Adaptive-Passive Tuned Mass Damper with Variable Stiffness for Vertical Human-Induced Vibration Control.” Engineering Structures 280:115714. https://doi.org/10.1016/j.engstruct.2023.115714.
  • Wang, L., W. Shi, and Y. Zhou. 2022. “Adaptive-Passive Tuned Mass Damper for Structural Aseismic Protection Including Soil–Structure Interaction.” Soil Dynamics and Earthquake Engineering 158:107298. https://doi.org/10.1016/j.soildyn.2022.107298.
  • Wang, L., Y. Zhou, and W. Shi. 2023. “Seismic Control of a Smart Structure with Semiactive Tuned Mass Damper and Adaptive Stiffness Property.” Earthquake Engineering and Resilience 2 (1): 74–93. https://doi.org/10.1002/eer2.38.
  • Wang, X., S. P. Strand, Y. Du, and K. M. Vårum. 2010. “Chitosan–DNA–Rectorite Nanocomposites: Effect of Chitosan Chain Length and Glycosylation.” Carbohydrate Polymers 79 (3): 590–596. https://doi.org/10.1016/j.carbpol.2009.09.012.
  • Wang, Y., L. Wang, and W. Shi. 2021. “Two-Dimensional Air Spring Based Semi-Active TMD for Vertical and Lateral Walking and Wind-Induced Vibration Control.” Structural Engineering and Mechanics 80 (4): 377–390.
  • Wang, Y., W. Wang, and A. Wang. 2013. “Efficient Adsorption of Methylene Blue on an Alginate-Based Nanocomposite Hydrogel Enhanced by Organo-Illite/smectite Clay.” Chemical Engineering Journal 228:132–139. https://doi.org/10.1016/j.cej.2013.04.090.
  • Xu, R., T. He, Y. Da, Y. Liu, J. Li, and C. Chen. 2019. “Utilizing Wood Fiber Produced with Wood Waste to Reinforce Autoclaved Aerated Concrete.” Construction and Building Materials 208:242–249. https://doi.org/10.1016/j.conbuildmat.2019.03.030.
  • Yao, Y., Y. Zhu, and Y. Yang. 2012. “Incorporation Superabsorbent Polymer (SAP) Particles as Controlling Pre-Existing Flaws to Improve the Performance of Engineered Cementitious Composites (ECC).” Construction and Building Materials 28 (1): 139–145. https://doi.org/10.1016/j.conbuildmat.2011.08.032.
  • Zhang, J., F. Huang, Y. Wu, T. Fu, B. Huang, W. Liu, and R. Qiu. 2022. “Mechanical Properties and Interface Improvement of Bamboo Cellulose Nanofibers Reinforced Autoclaved Aerated Concrete.” Cement and Concrete Composites 134:104760. https://doi.org/10.1016/j.cemconcomp.2022.104760.