597
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Algal pathway towards meeting United Nation’s sustainable development goal 6

, , , & ORCID Icon
Pages 678-686 | Received 15 Mar 2020, Accepted 13 Apr 2020, Published online: 06 May 2020

References

  • Abeysiriwardana-Arachchige ISA, Nirmalakhandan N. 2019. Predicting removal kinetics of biochemical oxygen demand (BOD) and nutrients in a pilot scale fed-batch algal wastewater treatment system. Algal Res. 43:101643. doi:10.1016/j.algal.2019.101643.
  • Arashiro LT, Montero N, Ferrer I, Acién FG, Gómez C, Garfí M. 2018. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ. 622–623:1118–1130. doi:10.1016/j.scitotenv.2017.12.051.
  • Arthur JP. 1983. Notes on the design and operation of waste stabilization ponds in warm climates of developing countries. World Bank technical paper; no. WTP 7. Urban development technical paper; no. 6. Washington (DC): The World Bank.
  • ASCE, ASCE’s. 2017. Infrastructure report card | GPA: D+, (2017). [accessed 2018 Dec 5]. https://www.infrastructurereportcard.org/.
  • Buchanan N. 2014. Comparison of the performance of a high rate algal pond with a waste stabilisation pond in rural South Australia. [Doctoral dissertation]. Flinders University, School of the Environment.
  • Cheng X, Delanka-Pedige HMK, Munasinghe-Arachchige SP, Abeysiriwardana-Arachchige ISA, Smith GB, Nirmalakhandan N, Zhang Y. 2019. Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. Sci Total Environ. 711:134435. doi:10.1016/j.scitotenv.2019.134435
  • Chojnacka K, Noworyta A. 2004. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol. 34(5):461–465. doi:10.1016/j.enzmictec.2003.12.002.
  • Craggs R, Park J, Heubeck S, Sutherland D. 2014. High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. New Zeal J Bot. 52(1):60–73. doi:10.1080/0028825X.2013.861855.
  • Craggs R, Sutherland D, Campbell H. 2012. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol. 24(3):329–337. doi:10.1007/s10811-012-9810-8.
  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR. 2011. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol. 63(4):660–665. doi:10.2166/wst.2011.100.
  • De Luca G, Sacchetti R, Leoni E, Zanetti F. 2013. Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: implications to water reuse. Bioresour Technol. 129:526–531. doi:10.1016/j.biortech.2012.11.113.
  • Delanka-Pedige HMK, Cheng X, Munasinghe-Arachchige ISA, Abeysiriwardana-Arachchige SP, Xu J, Nirmalakhandan Y, Zhang N. 2020. Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. Algal Res. 47:101865. doi:10.1016/j.algal.2020.101865.
  • Delanka-Pedige HMK, Munasinghe-Arachchige SP, Cornelius J, Henkanatte-Gedera SM, Tchinda D, Zhang Y, Nirmalakhandan N. 2019. Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulphuraria. Algal Res. 39:101423. doi:10.1016/j.algal.2019.101423.
  • E.P.A. Ireland. 1997. Waste water treatment manuals: primary, secondary and tertiary treatment. Wexford, Ireland: E.P.A.
  • EU Environment. 2019. The 2030 agenda for sustainable development and the SDGs. https://ec.europa.eu/environment/sustainable-development/SDGs/index_en.htm.
  • García J, Mujeriego R, Hernández-Mariné M. 2000. High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol. 12(3/5):331–339. doi:10.1023/A:1008146421368.
  • Garfí M, Flores L, Ferrer I. 2017. Life Cycle Assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds. J Clean Prod. 161:211–219. doi:10.1016/j.jclepro.2017.05.116.
  • Green FB, Lundquist TJ, Oswald WJ. 1995. Energetics of advanced integrated wastewater pond systems. Water Sci Technol. 31(12):9–20. doi:10.1016/0273-1223(95)00488-9.
  • Gutiérrez-Alfaro S, Rueda-Márquez JJ, Perales JA, Manzano MA. 2018. Combining sun-based technologies (microalgae and solar disinfection) for urban wastewater regeneration. Sci Total Environ. 619–620:1049–1057. doi:10.1016/j.scitotenv.2017.11.110.
  • Henkanatte-Gedera SM, Selvaratnam T, Caskan N, Nirmalakhandan N, Van Voorhies W, Lammers PJ. 2015. Algal-based, single-step treatment of urban wastewaters. Bioresour Technol. 189:273–278. doi:10.1016/j.biortech.2015.03.120.
  • Henkanatte-Gedera SM, Selvaratnam T, Karbakhshravari M, Myint M, Nirmalakhandan N, Van Voorhies W, Lammers PJ. 2017. Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: laboratory to field scale demonstration. Algal Res. 24:450–456. doi:10.1016/j.algal.2016.08.001.
  • Hernandez-Paniagua IY, Ramirez-Vargas R, Ramos-Gomez MS, Dendooven L, Avelar-Gonzalez FJ, Thalasso F. 2014. Greenhouse gas emissions from stabilization ponds in subtropical climate. Environ Technol. (United Kingdom). 35(6):727–734. doi:10.1080/09593330.2013.848910
  • Jaramillo MF, Restrepo I, Jaramillo MF, Restrepo I. 2017. Wastewater reuse in agriculture: a review about its limitations and benefits. Sustainability. 9:1734.
  • Kalbar PP, Karmakar S, Asolekar SR. 2013. Assessment of wastewater treatment technologies: life cycle approach. Water Environ J. 27(2):261–268. doi:10.1111/wej.12006.
  • Khan MI, Shin JH, Kim JD. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 17(1):36.
  • Kraume M, Bracklow U, Vocks M, Drews A. 2005. Nutrients removal in MBRs for municipal wastewater treatment. Water Sci Technol. 51(6–7):391–402. doi:10.2166/wst.2005.0661.
  • Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy. 66:204–213. doi:10.1016/j.biombioe.2014.04.010.
  • Li Y, Luo X, Huang X, Wang D, Zhang W. 2013. Life cycle assessment of a municipal wastewater treatment plant: A case study in Suzhou, China. J Clean Prod. 57:221–227. doi:10.1016/j.jclepro.2013.05.035.
  • MAHVI A. 2008. Sequencing batch reactor: a promising technology in wastewater treatment. Iran J Environ Heal Sci Eng. 5:79–90.
  • Maiga Y, Takahashi M, Somda TYK, Maiga AH. 2015. Greywater treatment by high rate algal pond under sahelian conditions for reuse in irrigation. J Water Resour Prot. 7(14):1143–1155. doi:10.4236/jwarp.2015.714094.
  • Mburu N, Tebitendwa SM, van Bruggen JJA, Rousseau DPL, Lens PNL. 2013. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: A case study of the Juja sewage treatment works. J Environ Manage. 128:220–225. doi:10.1016/j.jenvman.2013.05.031.
  • Melcer H, Bedford WK, Topnik BH, Schmidtke NW. 1987. Conversion of small municipal wastewater treatment plants to sequencing batch reactors. J (Water Pollut Control Fed). 59:79–85.
  • Melin T, Jefferson B, Bixio D, Thoeye C, De Wilde W, De Koning J, van der Graaf J, Wintgens T. 2006. Membrane bioreactor technology for wastewater treatment and reuse. Desalination. 187(1–3):271–282. doi:10.1016/j.desal.2005.04.086.
  • Metaxa E, Deviller G, Pagand P, Alliaume C, Casellas C, Blancheton JP. 2006. High rate algal pond treatment for water reuse in a marine fish recirculation system: water purification and fish health. Aquaculture. 252(1):92–101. doi:10.1016/j.aquaculture.2005.11.053.
  • Metcalf L, Eddy HP, Tchobanoglous, G. 1979. Wastewater engineering: treatment, disposal, and reuse. 3rd. New York (NY): McGraw-Hill.
  • Mizuta K, Shimada M. 2010. Benchmarking energy consumption in municipal wastewater treatment plants in Japan. Water Sci Technol. 62(10):2256–2262. doi:10.2166/wst.2010.510.
  • Munasinghe-Arachchige SP, Delanka-Pedige HMK, Abeysiriwardana-Arachchige ISA, Zhang Y, Nirmalakhandan N. 2019a. Predicting fecal coliform inactivation in a mixotrophic algal wastewater treatment system. Algal Res. 44:101698. doi:10.1016/j.algal.2019.101698.
  • Munasinghe-Arachchige SP, Delanka-Pedige HMK, Henkanatte-Gedera SM, Tchinda D, Zhang Y, Nirmalakhandan N. 2019b. Factors contributing to bacteria inactivation in the Galdieria sulphuraria-based wastewater treatment system. Algal Res. 38:101392. doi:10.1016/j.algal.2018.101392.
  • Nguyen TKL, Ngo HH, Guo W, Chang SW, Nguyen DD, Nghiem LD, Liu Y, Ni B, Hai FI. 2019. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes. Sci Total Environ. 671:1302–1313. doi:10.1016/j.scitotenv.2019.03.386.
  • Nirmalakhandan N, Selvaratnam T, Henkanatte-Gedera SM, Tchinda D, Abeysiriwardana-Arachchige ISA, Delanka-Pedige HMK, Munasinghe-Arachchige SP, Zhang Y, Holguin FO, Lammers PJ. 2019. Algal wastewater treatment: photoautotrophic vs mixotrophic processes. Algal Res. 41:101569. doi:10.1016/j.algal.2019.101569.
  • Orhon D, Artan N. 1994. Modelling of activated sludge systems. Lancaster (Pennsylvania): Technomic Pub. Co.
  • Ortiz M, Raluy RG, Serra L. 2007. Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination. 204(1–3):121–131. doi:10.1016/j.desal.2006.04.026.
  • Osborn D, Cutter A, Ullah F. 2015. Universal sustainable development goals. Understanding the Transformational Challenge for Developed Countries.
  • Park JBK, Craggs RJ, Shilton AN. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 102(1):35–42. doi:10.1016/j.biortech.2010.06.158.
  • Phuntsho S, Shon HK, Vigneswaran S, Kandasamy J. 2009. Wastewater stabilization ponds (WSP) for wastewater treatment. Wastewater Treat Technol. 2:44.
  • Qiu Y, Shi HC, He M. 2010. Nitrogen and phosphorous removal in municipal wastewater treatment plants in China: a review. Int J Chem Eng. 2010:1–10. doi:10.1155/2010/914159.
  • Richmond A. 2004. Handbook of microalgal culture: biotechnology and applied phycology. Oxford (UK). [accessed 2019 Feb 17]. www.blackwellpublishing.com
  • Rosa AP, Chernicharo CAL, Lobato LCS, Silva RV, Padilha RF, Borges JM. 2018. Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renew Energy. 124:21–26. doi:10.1016/j.renene.2017.09.025.
  • Saleh MMA, Mahmood UF, ANAEROBIC DIGESTION TECHNOLOGY FOR INDUSTRIAL WASTEWATER TREATMENT, in: Eighth Int. Water Technol. Conf. IWTC8 2004, Alexandria, Egypt.
  • Seghezzo L, Zeeman G, Van Lier JB, Hamelers HVM, Lettinga G. 1998. A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol. 65(3):175–190. doi:10.1016/S0960-8524(98)00046-7.
  • Selvaratnam T, Pegallapati AKK, Montelya F, Rodriguez G, Nirmalakhandan N, Van Voorhies W, Lammers PJJ. 2014. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Bioresour Technol. 156:395–399. doi:10.1016/j.biortech.2014.01.075.
  • Shilton AN, Mara DD, Craggs R, Powell N. 2008. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds. Water Sci Technol. 58(1):253–258. doi:10.2166/wst.2008.666.
  • Shoener BD, Bradley IM, Cusick RD, Guest JS. 2014. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environ Sci Process Impacts. 16(6):1204–1222. doi:10.1039/C3EM00711A.
  • Souza ME. 1986. Criteria for the utilization, design and operation of UASB reactors. Water Sci Technol. 18(12):55–69. doi:10.2166/wst.1986.0163.
  • Tchinda D, Henkanatte-Gedera SM, Abeysiriwardana-Arachchige ISA, Delanka-Pedige HMK, Munasinghe-Arachchige SP, Zhang Y, Nirmalakhandan N. 2019. Single-step treatment of primary effluent by Galdieria sulphuraria: removal of biochemical oxygen demand, nutrients, and pathogens. Algal Res. 42:101578. doi:10.1016/j.algal.2019.101578.
  • Uggetti E, Sialve B, Trably E, Steyer J-P. 2014. Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels Bioprod Biorefin. 8(4):516–529. doi:10.1002/bbb.1469.
  • United Nations. 2018. Sustainable development goal 6 synthesis report on water and sanitation. New York 10017.
  • United Nations. 2019. The sustainable development goals report. New York.
  • Urbano VR, Mendonça TG, Bastos RG, Souza CF. 2017. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric Water Manag. 181:108–115. doi:10.1016/j.agwat.2016.12.001.
  • US EPA. 2012. Guidelines for water reuse. Washington (DC): US EPA, Office of Wastewater Management, Office of Water.
  • US EPA. 2014. Promoting technology innovations for clean and safe water - Water technology innovation blueprint–Version 2. 820-R-14-006. US EPA, Office of Water.
  • Verbyla M, von Sperling M, Maiga Y. 2017. Waste Stabilization Ponds. In: Rose JB and Jiménez-Cisneros B, editors. Global water pathogen project. (Mihelcic J and Verbyla M. editors. Part 4: Management of risk from excreta and wastewater). Michigan State University, E. Lansing, MI: UNESCO.
  • World Health Organization. 2006. Guidelines for the safe use of wastewater, excreta, and greywater. Geneva, Switzerland: World Health Organization.
  • Young P, Taylor M, Fallowfield HJ. 2017. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. World J Microbiol Biotechnol. 33(6):117. doi:10.1007/s11274-017-2282-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.