231
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Urban green and blue infrastructure effect on the micro-scale thermal environment in a residential neighborhood: Mueller, Austin, TX

, &
Pages 910-924 | Received 24 Jun 2022, Accepted 05 Jun 2023, Published online: 08 Jun 2023

References

  • Anderson GB, Bell Michelle L. 2011. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. Communities. Environ Health Perspect. 119(2):210–218. doi:10.1289/ehp.1002313.
  • Boumans RJM, Phillips DL, Victery W, Fontaine TD. 2014. Developing a model for effects of climate change on human health and health–environment interactions: heat stress in Austin, Texas. Urban Climate. 8:78–99. doi:10.1016/j.uclim.2014.03.001.
  • Brown RD, Gillespie TJ. 1990. Estimating radiation received by a person under different species of shade trees. J Arboric. 16(6):158–161. English. doi:10.48044/jauf.1990.038.
  • Brown RD, Gillespie TJ. 1995. Microclimatic landscape design: creating thermal comfort and energy efficiency. Wiley & Sons.
  • Calise TV, DeJong W, Heren T, Wingerter C, Kohl HW. 2018. What ?Moves? the populations most likely to be physically inactive?Women and older adults? Evidence from Mueller, a mixed-use neighborhood in Austin, Texas. J Phys Act Health. 15(12):888–894. English. doi:10.1123/jpah.2017-0322.
  • Chatzidimitriou A, Yannas S. 2016. Microclimate design for open spaces: ranking urban design effects on pedestrian thermal comfort in summer. Sustain Cities Soc. 26:27–47. doi:10.1016/j.scs.2016.05.004.
  • Chen X, Zhao P, Hu Y, Ouyang L, Zhu L, Ni G. 2019. Canopy transpiration and its cooling effect of three urban tree species in a subtropical city- Guangzhou, China. Urban Forestry & Urban Greening. 43:126368. doi:10.1016/j.ufug.2019.126368.
  • City of Austin Economic Development Department and Catellus Austin LLC. 2017. Mueller design book. The Master Plan for Robert Mueller Municipal Airport Redevelopment. http://www.muelleraustin.com/uploads/plan/MDB_FINAL_2017.09.15.pdf.
  • Coccolo S, Kämpf J, Scartezzini J-L, Pearlmutter D. 2016. Outdoor human comfort and thermal stress: a comprehensive review on models and standards. Urban Climate. 18:33–57. doi:10.1016/j.uclim.2016.08.004.
  • Coutts AM, White EC, Tapper NJ, Beringer J, Livesley SJ. 2016. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol. 124(1):55–68. doi:10.1007/s00704-015-1409-y.
  • Craney TA, Surles JG. 2002. Model-dependent variance inflation factor cutoff values. Qual Eng. 14(3):391–403. doi:10.1081/QEN-120001878.
  • Du H, Song X, Jiang H, Kan Z, Wang Z, Cai Y. 2016. Research on the cooling island effects of water body: a case study of Shanghai, China. Ecol Indic. 67:31–38. doi:10.1016/j.ecolind.2016.02.040.
  • Feyisa GL, Dons K, Meilby H. 2014. Efficiency of parks in mitigating urban heat island effect: an example from Addis Ababa. Landsc Urban Plan. 123:87–95. doi:10.1016/j.landurbplan.2013.12.008.
  • Gasparrini A, Armstrong B. 2011. The impact of heat waves on mortality. Epidemiology. 22(1):68–73. eng. doi:10.1097/EDE.0b013e3181fdcd99.
  • Grant RH, Heisler GM, Gao W, Jenks M. 2003. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric For Meteorol. 120(1):127–139. doi:10.1016/j.agrformet.2003.08.025.
  • Green AC, Wallingford SC, McBride P. 2011. Childhood exposure to ultraviolet radiation and harmful skin effects: epidemiological evidence. Prog Biophys Mol Biol. 107(3):349–355. doi:10.1016/j.pbiomolbio.2011.08.010.
  • Gunawardena KR, Wells MJ, Kershaw T. 2017. Utilising green and bluespace to mitigate urban heat island intensity. Sci Total Environ. 584-585:1040–1055. doi:10.1016/j.scitotenv.2017.01.158.
  • Hefny Salim M, Heinke Schlünzen K, Grawe D. 2015. Including trees in the numerical simulations of the wind flow in urban areas: should we care? J Wind Eng Ind Aerod. 144:84–95. doi:10.1016/j.jweia.2015.05.004.
  • Jacobs C, Klok L, Bruse M, Cortesão J, Lenzholzer S, Kluck J. 2020. Are urban water bodies really cooling? Urban Climate. 32:100607. doi:10.1016/j.uclim.2020.100607.
  • Jamei E, Jamei Y, Rajagopalan P, Ossen DR, Roushenas S. 2015. Effect of built-up ratio on the variation of air temperature in a heritage city [Article]. Sustain Cities Soc. 14:280–292. doi:10.1016/j.scs.2014.10.001.
  • Jamei E, Rajagopalan P. 2017. Urban development and pedestrian thermal comfort in Melbourne. Sol Energy. 144:681–698. doi:10.1016/j.solener.2017.01.023.
  • Karimi A, Sanaieian H, Farhadi H, Norouzian-Maleki S. 2020. Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Ener Rep. 6:1670–1684. doi:10.1016/j.egyr.2020.06.015.
  • Kenny NA, Warland JS, Brown RD, Gillespie TG. 2009a. Part A: assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int J Biometeorol. 53(5):415. doi:10.1007/s00484-009-0226-3.
  • Kenny NA, Warland JS, Brown RD, Gillespie TG. 2009b. Part B: revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. Int J Biometeorol. 53(5):429. doi:10.1007/s00484-009-0227-2.
  • Kim SW, Brown RD. 2021. Urban heat island (UHI) intensity and magnitude estimations: a systematic literature review. Sci Total Environ. 779:146389. doi:10.1016/j.scitotenv.2021.146389.
  • Kim SW, Brown RD. 2022. Pedestrians’ behavior based on outdoor thermal comfort and micro-scale thermal environments, Austin, TX. Sci Total Environ. 808:152143. doi:10.1016/j.scitotenv.2021.152143.
  • Kim H, Kim SW, Jo Y, Kim EJ. 2022. Findings from a field study of urban microclimate in Korea using mobile meteorological measurements. Open House Int. 47(3):473–493. doi:10.1108/OHI-12-2021-0280.
  • Kong L, Lau K-L, Yuan C, Chen Y, Xu Y, Ren C, Ng E. 2017. Regulation of outdoor thermal comfort by trees in Hong Kong. Sustain Cities Soc. 31:12–25. doi:10.1016/j.scs.2017.01.018.
  • Kong F, Yin H, Wang C, Cavan G, James P. 2014. A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban Forestry & Urban Greening. 13(4):846–853. doi:10.1016/j.ufug.2014.09.009.
  • Langenheim N, White M, Tapper N, Livesley SJ, Ramirez-Lovering D. 2020. Right tree, right place, right time: a visual-functional design approach to select and place trees for optimal shade benefit to commuting pedestrians. Sustain Cities Soc. 52:101816. doi:10.1016/j.scs.2019.101816.
  • Lapisa R, Bozonnet E, Salagnac P, Abadie MO. 2018. Optimized design of low-rise commercial buildings under various climates – Energy performance and passive cooling strategies. Build Environ. 132:83–95. doi:10.1016/j.buildenv.2018.01.029.
  • Leal Filho W, Echevarria Icaza L, Neht A, Klavins M, Morgan EA. 2018. Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J Clean Prod. 171:1140–1149. doi:10.1016/j.jclepro.2017.10.086.
  • Lee I, Voogt AJ, Gillespie JT. 2018. Analysis and comparison of shading strategies to increase human thermal comfort in Urban Areas. Atmosphere. 9(3):91. doi:10.3390/atmos9030091.
  • Lian Z, Liu B, Brown RD. 2020. Exploring the suitable assessment method and best performance of human energy budget models for outdoor thermal comfort in hot and humid climate area. Sustain Cities Soc. 63:102423. doi:10.1016/j.scs.2020.102423.
  • Lin Y, Wang Z, Jim CY, Li J, Deng J, Liu J. 2020. Water as an urban heat sink: blue infrastructure alleviates urban heat island effect in mega-city agglomeration. J Clean Prod. 262:121411. doi:10.1016/j.jclepro.2020.121411.
  • Liu Z, Brown RD, Zheng S, Jiang Y, Zhao L. 2020. An in-depth analysis of the effect of trees on human energy fluxes. Urban Forestry & Urban Greening. 50:126646. doi:10.1016/j.ufug.2020.126646.
  • Liu Z, Cheng W, Jim CY, Morakinyo TE, Shi Y, Ng E. 2021. Heat mitigation benefits of urban green and blue infrastructures: a systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Build Environ. 200:107939. doi:10.1016/j.buildenv.2021.107939.
  • Liu C, Wu X, Wang L. 2019. Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area, China. Appl Geogr. 105:1–14. doi:10.1016/j.apgeog.2019.02.009.
  • Matzarakis A, Mayer H, Iziomon MG. 1999. Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol. 43(2):76–84. doi:10.1007/s004840050119.
  • McCarthy MP, Best MJ, Betts RA. 2010. Climate change in cities due to global warming and urban effects. Geophys Res Lett. 37(9). doi:10.1029/2010GL042845.
  • METER Group. 2019. ATMOS 41 manual. Pullman, WA: METER Group, Inc. USA: METER Group, Inc.; [accessed 23 September, 2019]. http://library.metergroup.com/Manuals/20635_ATMOS41_Manual_Web.pdf.
  • Morakinyo TE, Kong L, Lau K-L, Yuan C, Ng E. 2017. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build Environ. 115:1–17. doi:10.1016/j.buildenv.2017.01.005.
  • Morakinyo TE, Lau K-L, Ren C, Ng E. 2018. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Build Environ. 137:157–170. doi:10.1016/j.buildenv.2018.04.012.
  • Nasrollahi N, Hatami M, Khastar SR, Taleghani M. 2017. Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustain Cities Soc. 35:449–467. doi:10.1016/j.scs.2017.08.017.
  • Ng E, Chen L, Wang Y, Yuan C. 2012. A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Build Environ. 47:256–271. doi:10.1016/j.buildenv.2011.07.014.
  • Oke TR. 1988. Street design and urban canopy layer climate. Energ Buildings. 11(1):103–113. doi:10.1016/0378-7788(88)90026-6.
  • Oliveira S, Andrade H, Vaz T. 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ. 46(11):2186–2194. doi:10.1016/j.buildenv.2011.04.034.
  • Ong BL. 2003. Green plot ratio: an ecological measure for architecture and urban planning. Landsc Urban Plan. 63(4):197–211. doi:10.1016/S0169-2046(02)00191-3.
  • Oogathoo S, Houle D, Duchesne L, Kneeshaw D. 2020. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric For Meteorol. 291:108063. doi:10.1016/j.agrformet.2020.108063.
  • Oshan TM, Li Z, Kang W, Wolf LJ, Fotheringham AS. 2019. Mgwr: a python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int J Geo-Infor. 8(6):269. doi:10.3390/ijgi8060269.
  • Park K, Christensen K, Lee D. 2020. Unmanned aerial vehicles (UAVs) in behavior mapping: a case study of neighborhood parks. Urban Forestry & Urban Greening. 52:126693. doi:10.1016/j.ufug.2020.126693.
  • Park J, Kim J-H, Lee DK, Park CY, Jeong SG. 2017. The influence of small green space type and structure at the street level on urban heat island mitigation [Article]. Urban Forestry & Urban Greening. 21:203–212. doi:10.1016/j.ufug.2016.12.005.
  • Peng J, Liu Q, Xu Z, Lyu D, Du Y, Qiao R, Wu J. 2020. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landsc Urban Plan. 202:103873. doi:10.1016/j.landurbplan.2020.103873.
  • Rahman MA, Armson D, Ennos AR. 2015. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 18(2):371–389. doi:10.1007/s11252-014-0407-7.
  • Rahman MA, Hartmann C, Moser-Reischl A, von Strachwitz MF, Paeth H, Pretzsch H, Pauleit S, Rötzer T. 2020. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric For Meteorol. 287:107947. doi:10.1016/j.agrformet.2020.107947.
  • Rahman MA, Stratopoulos LMF, Moser-Reischl A, Zölch T, Häberle K-H, Rötzer T, Pretzsch H, Pauleit S. 2020. Traits of trees for cooling urban heat islands: a meta-analysis. Build Environ. 170:106606. doi:10.1016/j.buildenv.2019.106606.
  • Sabrin S, Karimi M, Nazari R, Pratt J, Bryk J. 2021. Effects of different urban-vegetation morphology on the canopy-level thermal comfort and the cooling benefits of shade trees: case-study in Philadelphia. Sustain Cities Soc. 66:102684. doi:10.1016/j.scs.2020.102684.
  • Sadatsafavi H, Leveridge A, McCreary M, Slater J, Wit T, Yu C-Y, Zhao D, Zhu X. 2014. A blueprint for healthy communities-case study of Mueller community and Colony Park project in Austin, Texas. ICSI. 2014:388–401.
  • Salata F, Golasi I, de Lieto Vollaro R, de Lieto Vollaro A. 2016. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain Cities Soc. 26:318–343. doi:10.1016/j.scs.2016.07.005.
  • Saneinejad S, Moonen P, Carmeliet J. 2014. Comparative assessment of various heat island mitigation measures. Build Environ. 73:162–170. doi:10.1016/j.buildenv.2013.12.013.
  • Santamouris M, Gaitani N, Spanou A, Saliari M, Giannopoulou K, Vasilakopoulou K, Kardomateas T. 2012. Using cool paving materials to improve microclimate of urban areas – Design realization and results of the flisvos project. Build Environ. 53:128–136. doi:10.1016/j.buildenv.2012.01.022.
  • Sanusi R, Johnstone D, May P, Livesley SJ. 2017. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in plant area index. Landsc Urban Plan. 157:502–511. doi:10.1016/j.landurbplan.2016.08.010.
  • Shashua-Bar L, Hoffman ME. 2000a. Vegetation as a climatic component in the design of an urban street: an empirical model for predicting the cooling effect of urban green areas with trees. Energ Buildings. 31(3):221–235. doi:10.1016/S0378-7788(99)00018-3.
  • Shashua-Bar L, Hoffman ME. 2000b. Vegetation as a climatic component in the design of an urban street. An empirical model for predicting the cooling effect of urban green areas with trees [Article]. Energ Buildings. 31(3):221–235. doi:10.1016/S0378-7788(99)00018-3.
  • Smith P, Sarricolea P, Peralta O, Aguila JP, Thomas F. 2021. Study of the urban microclimate using thermal UAV. The case of the mid-sized cities of Arica (arid) and Curicó (Mediterranean. Chile Build Environ. 206:108372. doi:10.1016/j.buildenv.2021.108372.
  • Sohn W, Kim HW, Kim J-H, Li M-H. 2020. The capitalized amenity of green infrastructure in single-family housing values: an application of the spatial hedonic pricing method. Urban Forestry & Urban Greening. 49:126643. doi:10.1016/j.ufug.2020.126643.
  • Spatari S, Yu Z, Montalto FA. 2011. Life cycle implications of urban green infrastructure. Environ Pollut. 159(8):2174–2179. doi:10.1016/j.envpol.2011.01.015.
  • Stone B, Hess Jeremy J, Frumkin H. 2010. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspect. 118(10):1425–1428. doi:10.1289/ehp.0901879.
  • Sun R, Chen L. 2012. How can urban water bodies be designed for climate adaptation? Landsc Urban Plan. 105(1):27–33. doi:10.1016/j.landurbplan.2011.11.018.
  • Sun R, Chen A, Chen L, Lü Y. 2012. Cooling effects of wetlands in an urban region: the case of Beijing. Ecol Indic. 20:57–64. doi:10.1016/j.ecolind.2012.02.006.
  • Tan X, Sun X, Huang C, Yuan Y, Hou D. 2021. Comparison of cooling effect between green space and water body. Sustain Cities Soc. 67:102711. doi:10.1016/j.scs.2021.102711.
  • Thompson CG, Kim RS, Aloe AM, Becker BJ. 2017. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl Soc Psych. 39(2):81–90. doi:10.1080/01973533.2016.1277529.
  • Vanos JK, Warland JS, Gillespie TJ, Kenny NA. 2012. Improved predictive ability of climate–human–behaviour interactions with modifications to the COMFA outdoor energy budget model. Int J Biometeorol. 56(6):1065–1074. doi:10.1007/s00484-012-0522-1.
  • Webster C, Westoby M, Rutter N, Jonas T. 2018. Three-dimensional thermal characterization of forest canopies using UAV photogrammetry. Remote Sens Environ. 209:835–847. doi:10.1016/j.rse.2017.09.033.
  • Wu Z, Dou P, Chen L. 2019. Comparative and combinative cooling effects of different spatial arrangements of buildings and trees on microclimate. Sustain Cities Soc. 51:101711. doi:10.1016/j.scs.2019.101711.
  • Wu R, Fang X, Brown R, Liu S, Zhao H. 2023. The COMFAcourtyard model for assessing courtyard thermal comfort in hot and humid regions: a comparative study with existing models. Build Environ. 234:110150. doi:10.1016/j.buildenv.2023.110150.
  • Xu R, Zhang W, Wong NH, Tong S, Wu X. 2022. A novel methodology to obtain ambient temperatures using multi-rotor UAV-mounted sensors. Urban Climate. 41:101068. doi:10.1016/j.uclim.2021.101068.
  • Yan H, Fan S, Guo C, Wu F, Zhang N, Dong L. 2014. Assessing the effects of landscape design parameters on intra-urban air temperature variability: the case of Beijing, China [Article]. Build Environ. 76:44–53. doi:10.1016/j.buildenv.2014.03.007.
  • Yang G, Yu Z, Jørgensen G, Vejre H. 2020. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustain Cities Soc. 53:101932. doi:10.1016/j.scs.2019.101932.
  • Yin S, Lang W, Xiao Y. 2019. The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustain Cities Soc. 49:101571. doi:10.1016/j.scs.2019.101571.
  • Yoshida A, Hisabayashi T, Kashihara K, Kinoshita S, Hashida S. 2015. Evaluation of effect of tree canopy on thermal environment, thermal sensation, and mental state. Urban Climate. 14:240–250. doi:10.1016/j.uclim.2015.09.004.
  • Yu Z, Yang G, Zuo S, Jørgensen G, Koga M, Vejre H. 2020. Critical review on the cooling effect of urban blue-green space: a threshold-size perspective. Urban Forestry & Urban Greening. 49:126630. doi:10.1016/j.ufug.2020.126630.
  • Zheng S, Guldmann J-M, Liu Z, Zhao L. 2018. Influence of trees on the outdoor thermal environment in subtropical areas: an experimental study in Guangzhou, China. Sustain Cities Soc. 42:482–497. doi:10.1016/j.scs.2018.07.025.
  • Zheng S, Guldmann J-M, Liu Z, Zhao L, Wang J, Pan X. 2020. Modeling of shade creation and radiation modification by four tree species in hot and humid areas: case study of Guangzhou, China. Urban Forestry & Urban Greening. 47:126545. doi:10.1016/j.ufug.2019.126545.
  • Zhu C, Zhang X, Zhou M, He S, Gan M, Yang L, Wang K. 2020. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol Indic. 117:106654. doi:10.1016/j.ecolind.2020.106654.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.