977
Views
2
CrossRef citations to date
0
Altmetric
Articles

Examining undergraduate students’ systems thinking competency through a problem scenario in the context of climate change education

ORCID Icon
Pages 1780-1795 | Received 25 Feb 2022, Accepted 26 Aug 2022, Published online: 08 Sep 2022

References

  • Aksit, O., K. S. McNeal, A. U. Gold, J. C. Libarkin, and S. Harris. 2018. “The Influence of Instruction, Prior Knowledge, and Values on Climate Change Risk Perception among Undergraduates.” Journal of Research in Science Teaching 55 (4): 550–572. doi:10.1002/tea.21430.
  • Anderson, A. 2012. “Climate Change Education for Mitigation and Adaptation.” Journal of Education for Sustainable Development 6 (2): 191–206. doi:10.1177/0973408212475199.
  • Anderson, V, and L. Johnson. 1997. Systems Thinking Basics. Pegasus Communications.
  • Arnold, R. D, and J. P. Wade. 2015. “A Definition of Systems Thinking: A Systems Approach.” Procedia Computer Science 44: 669–678. doi:10.1016/j.procs.2015.03.050.
  • Batzri, O., O. Ben-Zvi Assaraf, C. Cohen, and N. Orion. 2015. “Understanding the Earth Systems: Expressions of Dynamic and Cyclic Thinking among University Students.” Journal of Science Education and Technology 24 (6): 761–775. doi:10.1007/s10956-015-9562-8.
  • Ben-Zvi Assaraf, O, and N. Orion. 2005. “Development of System Thinking Skills in the Context of Earth System Education.” Journal of Research in Science Teaching 42 (5): 518–560. doi:http://dx.doi.org/10.1002/tea.20061.
  • Ben-Zvi Assaraf, O., J. Dodick, and J. Tripto. 2013. “High School Students’ Understanding of the Human Body System [Article.” Research in Science Education 43 (1): 33–56. http://search.ebscohost.com/login.aspx?direct=true&db=ehh&AN=99370693&lang=zh-tw&site=ehost-live. doi:10.1007/s11165-011-9245-2.
  • Bierbaum, R., A. Cowie, R. Barra, B. Ratner, R. Sims, M. Stocking, G. Durón, S. Leonard, and C. Whaley. 2018. “Integration: To Solve Complex Environmental Problems.” Scientific and Technical Advisory Panel to the Global Environment Facility.
  • Bond, T., Z. Yan, and M. Heene. 2021. Applying the Rasch Model: Fundamental Measurement in the Human Sciences. 4th ed. Routledge.
  • Boone, W. J, and K. Scantlebury. 2006. “The Role of Rasch Analysis When Conducting Science Education Research Utilizing Multiple-Choice Tests.” Science Education 90 (2): 253–269. doi:10.1002/sce.20106.
  • Braun, T, and P. Dierkes. 2019. “Evaluating Three Dimensions of Environmental Knowledge and Their Impact on Behaviour.” Research in Science Education 49 (5): 1347–1365. doi:10.1007/s11165-017-9658-7.
  • Cheung, A. C, and R. E. Slavin. 2016. “How Methodological Features Affect Effect Sizes in Education.” Educational Researcher 45 (5): 283–292. doi:10.3102/0013189X16656615.
  • Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. New York: Routledge Academic.
  • Covitt, B. A., K. L. Gunckel, and C. W. Anderson. 2009. “Students’ Developing Understanding of Water in Environmental Systems.” Journal of Environmental Education 40 (3): 37–51. doi:http://dx.doi.org/10.3200/JOEE.40.3.37-51.
  • Cross, I. D, and A. Congreve. 2021. “Teaching (Super) Wicked Problems: Authentic Learning about Climate Change.” Journal of Geography in Higher Education 45 (4): 491–516. doi:10.1080/03098265.2020.1849066.
  • Davis, K., N. Ghaffarzadegan, J. Grohs, D. Grote, N. Hosseinichimeh, D. Knight, H. Mahmoudi, and K. Triantis. 2020. “The Lake Urmia Vignette: A Tool to Assess Understanding of Complexity in Socio-Environmental Systems.” System Dynamics Review 36 (2): 191–222. doi:10.1002/sdr.1659.
  • Donald, J. G. 2002. Learning to Think: Disciplinary Perspectives. The Jossey-Bass Higher and Adult Education Series. San Francisco, CA: Jossey-Bass.
  • Fordyce, D. 1988. “The Development of Systems Thinking in Engineering Education: An Interdisciplinary Model.” European Journal of Engineering Education 13 (3): 283–292. doi:10.1080/03043798808939427.
  • Gero, A, and E. Zach. 2014. “High School Programme in Electro-Optics: A Case Study on Interdisciplinary Learning and Systems Thinking.” International Journal of Engineering Education 30 (5): 1190–1199.
  • Gilbert, L. A., D. S. Gross, and K. J. Kreutz. 2019. “Developing Undergraduate Students’ Systems Thinking Skills with an InTeGrate Module.” Journal of Geoscience Education 67 (1): 34–49. doi:10.1080/10899995.2018.1529469.
  • Grohs, J. R., G. R. Kirk, M. M. Soledad, and D. B. Knight. 2018. “Assessing Systems Thinking: A Tool to Measure Complex Reasoning through Ill-Structured Problems.” Thinking Skills and Creativity 28: 110–130. doi:10.1016/j.tsc.2018.03.003.
  • Hedges, L. V, and E. C. Hedberg. 2007. “Intraclass Correlation Values for Planning Group-Randomized Trials in Education.” Educational Evaluation and Policy Analysis 29 (1): 60–87. doi:10.3102/0162373707299706.
  • Hiller Connell, K. Y., S. M. Remington, and C. M. Armstrong. 2012. “Assessing Systems Thinking Skills in Two Undergraduate Sustainability Courses: A Comparison of Teaching Strategies.” Journal of Sustainability Education 3.
  • Hodson, D. 2011. “Turning the Spotlight on Science Education.” In Looking to the Future, 137–163. Rotterdam: SensePublishers. doi:10.1007/978-94-6091-472-0_5.
  • Hofman-Bergholm, M. 2018. “Could Education for Sustainable Development Benefit from a Systems Thinking Approach?” Systems 6 (4): 43. doi:https://www.mdpi.com/2079-8954/6/4/43.
  • Holley, K. A. 2009. Understanding Interdisciplinary Challenges and Opportunities in Higher Education. San Francisco, CA: Jossey-Bass.
  • Huot, S., J. McKay, S. Barbic, A. Wylie, D. Weis, S. Bean Sherman, and L. Holsti. 2020. “Tackling Complex Social Challenges within Neoliberal Constraints: The Context Shaping ‘Intellectual Quality of Life’ (iQoL) in a Canadian University Context.” Societies 10 (1): 26. doi:https://www.mdpi.com/2075-4698/10/1/26.
  • Iliopoulou, I. 2018. “Can Young Students Think Systemically about the Environment? The Case of Pollution.” Education 46 (3): 362–377. doi:10.1080/03004279.2016.1266688.
  • Intergovernmental Panel on Climate Change. 2013. “Climate Change 2013: The Physical Science Basis.” Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (edited by Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley).
  • Intergovernmental Panel on Climate Change. 2014. “Climate Change 2014: Mitigation of Climate Change.” Contribution of Working Group III (WG3) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). (edited by Ottmar Edenhofer, Ramon Pichs-Madruga, Youba Sokona, Susanne Kadner, and Jan Minx, Steffen Brunner).
  • Jho, H., H.-G. Yoon, and M. Kim. 2014. “The Relationship of Science Knowledge, Attitude and Decision Making on Socio-Scientific Issues: The Case Study of Students’ Debates on a Nuclear Power Plant in Korea.” Science & Education 23 (5): 1131–1151. doi:10.1007/s11191-013-9652-z.
  • Jones, A., C. Buntting, R. Hipkins, A. McKim, L. Conner, and K. Saunders. 2012. “Developing Students’ Futures Thinking in Science Education.” Research in Science Education 42 (4): 687–708. doi:10.1007/s11165-011-9214-9.
  • Jordan, R. C., C. Hmelo-Silver, L. Liu, and S. A. Gray. 2013. “Fostering Reasoning about Complex Systems: Using the Aquarium to Teach Systems Thinking.” Applied Environmental Education & Communication 12 (1): 55–64. doi:10.1080/1533015X.2013.797860.
  • Kahn, S, and D. L. Zeidler. 2016. “Using Our Heads and HARTSS*: Developing Perspective-Taking Skills for Socioscientific Reasoning (*Humanities, ARTs, and Social Sciences).” Journal of Science Teacher Education 27 (3): 261–281. doi:10.1007/s10972-016-9458-3.
  • Ke, L., T. D. Sadler, L. Zangori, and P. J. Friedrichsen. 2020. “Students’ Perceptions of Socio-Scientific Issue-Based Learning and Their Appropriation of Epistemic Tools for Systems Thinking.” International Journal of Science Education 42 (8): 1339–1361. doi:10.1080/09500693.2020.1759843.
  • Keynan, A., O. Ben-Zvi Assaraf, and D. Goldman. 2014. “The Repertory Grid as a Tool for Evaluating the Development of Students’ Ecological System Thinking Abilities.” Studies in Educational Evaluation 41 (0): 90–105. doi:http://www.sciencedirect.com/science/article/pii/S0191491X13000485.
  • Kollmuss, A, and J. Agyeman. 2002. “Mind the Gap: Why Do People Act Environmentally and What Are the Barriers to Pro-Environmental Behavior?” Environmental Education Research 8 (3): 239–260. doi:10.1080/13504620220145401.
  • Kraft, M. A. 2020. “Interpreting Effect Sizes of Education Interventions.” Educational Researcher 49 (4): 241–253. doi:10.3102/0013189X20912798.
  • Lally, D, and C. T. Forbes. 2020. “Sociohydrologic Systems Thinking: An Analysis of Undergraduate Students’ Operationalization and Modeling of Coupled Human-Water Systems.” Water 12 (4): 1040. doi:10.3390/w12041040.
  • Lezak, S. B, and P. H. Thibodeau. 2016. “Systems Thinking and Environmental Concern.” Journal of Environmental Psychology 46: 143–153. doi:10.1016/j.jenvp.2016.04.005.
  • Libarkin, J. C., A. U. Gold, S. E. Harris, K. S. McNeal, and R. P. Bowles. 2018. “A New, Valid Measure of Climate Change Understanding: Associations with Risk Perception.” Climatic Change 150 (3–4): 403–416. doi:10.1007/s10584-018-2279-y.
  • Lipsey, M. W., K. Puzio, C. Yun, M. A. Hebert, K. Steinka-Fry, M. W. Cole, M. Roberts, K. S. Anthony, and M. D. Busick. 2012. “Translating the Statistical Representation of the Effects of Education Interventions into More Readily Interpretable Forms.”
  • Liu, C.-M., S.-H. Lin, S. H. Schneider, T. L. Root, K.-T. Lee, H.-J. Lu, P.-F. Lee, C.-Y. Ko, C.-R. Chiou, and H.-J. Lin. 2010. “Climate Change Impact Assessment in Taiwan.” Global Change Research Center, National Taiwan University, 51 p.
  • Li, Y.-Y., and S.-C. Liu. 2021. “Examining Taiwanese Students’ Views on Climate Change and the Teaching of Climate Change in the Context of Higher Education”. Research in Science & Technological Education. doi:10.1080/02635143.2020.1830268
  • Liu, S.-C., H. Lin, H.-S., & C.-Y. Tsai. 2020. “Ninth Grade Students’ Mental Models of the Marine Environment and Their Implications for Environmental Science Education in Taiwan. ”The Journal of Environmental Education 51 (1): 72–82. doi:10.1080/00958964.2019.1633990
  • Lorenzoni, I., S. Nicholson-Cole, and L. Whitmarsh. 2007. “Barriers Perceived to Engaging with Climate Change among the UK Public and Their Policy Implications.” Global Environmental Change 17 (3–4): 445–459. http://www.sciencedirect.com/science/article/pii/S0959378007000209. doi:10.1016/j.gloenvcha.2007.01.004.
  • McKeown, R, and C. Hopkins. 2010. “Rethinking Climate Change Education.” Green Teacher 89: 17
  • Meadows, D. H. 2008. Thinking in Systems: A Primer. White River Junction, Vermont: Chelsea Green Publishing.
  • Milfont, T. L. 2012. “The Interplay between Knowledge, Perceived Efficacy, and Concern about Global Warming and Climate Change: A one-Year Longitudinal Study.” Risk Analysis 32 (6): 1003–1020. 10.1111/j.1539-6924.2012.01800.x.
  • Ministry of Science and Technology. 2018. Climate Change in Taiwan 2017: Scientific Report—The Physical Science Basis. Author.
  • National Science Foundation. 2009. Earth Science Literacy Principles. Author. http://www.earthscienceliteracy.org/es_literacy_6may10_.pdf
  • Pan, Y.-T., and S.-C. Liu. 2018. “Students’ Understanding of a Groundwater System and Attitudes Towards Groundwater Use and Conservation.” International Journal of Science Education 40 (5): 564–578. doi:10.1080/09500693.2018.1435922
  • Penner, D. E. 2000. “Explaining Systems: Investigating Middle School Students’ Understanding of Emergent Phenomena.” Journal of Research in Science Teaching 37 (8): 784–806. doi:10.1002/1098-2736(200010)37:8<784::AID-TEA3>3.0.CO;2-E.
  • Rasch, G. 1980. Probabilistic Models for Some Intelligence and Attainment Tests. Chicago: University of Chicago Press.
  • Rittel, H. W. J, and M. M. Webber. 1973. “Dilemmas in a General Theory of Planning.” Policy Sciences 4 (2): 155–169. doi:10.1007/BF01405730.
  • Roychoudhury, A., D. P. Shepardson, A. Hirsch, D. Niyogi, J. Mehta, and S. Top. 2017. “The Need to Introduce System Thinking in Teaching Climate Change.” Science Educator 25 (2): 73–81.
  • Sadler, T. D, and D. L. Zeidler. 2005. “The Significance of Content Knowledge for Informal Reasoning regarding Socioscientific Issues: Applying Genetics Knowledge to Genetic Engineering Issues.” Science Education 89 (1): 71–93. doi:10.1002/sce.20023.
  • Sadler, T. D, and L. A. Donnelly. 2006. “Socioscientific Argumentation: The Effects of Content Knowledge and Morality.” International Journal of Science Education 28 (12): 1463–1488. doi:10.1080/09500690600708717.
  • Sadler, T. D., H. Nguyen, and D. Lankford. 2017. e1178. “Water Systems Understandings: A Framework for Designing Instruction and considering What Learners Know about Water.” Wiley Interdisciplinary Reviews: Water 4. doi:10.1002/wat2.1178.
  • Sadler, T. D., S. A. Barab, and B. Scott. 2007. “What Do Students Gain by Engaging in Socioscientific Inquiry?” Research in Science Education 37 (4): 371–391. doi:10.1007/s11165-006-9030-9.
  • Senge, P. M. 1990. The Fifth Discipline: The Art and Practice of the Learning Organization. New York: Doubleday/Currency.
  • Shepardson, D. P., A. Roychoudhury, A. Hirsch, D. Niyogi, and S. M. Top. 2014. “When the Atmosphere Warms It Rains and Ice Melts: Seventh Grade Students’ Conceptions of a Climate System.” Environmental Education Research, 20 (3): 333–353. doi:10.1080/13504622.2013.803037.
  • Shepardson, D. P., D. Niyogi, A. Roychoudhury, and A. Hirsch. 2012. “Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education.” Environmental Education Research 18 (3): 323–352. doi:10.1080/13504622.2011.622839.
  • Sibley, D. F., C. W. Anderson, M. Heidemann, J. E. Merrill, J. M. Parker, and D. W. Szymanski. 2007. “Box Diagrams to Assess Students’ Systems Thinking about the Rock, Water and Carbon Cycles.” Journal of Geoscience Education 55 (2): 138–146. doi:10.5408/1089-9995-55.2.138.
  • Stave, K, and M. Hopper. 2007. “What Constitutes Systems Thinking? a Proposed Taxonomy.” The 25th International Conference of the System Dynamics Society, Boston, MA.
  • Sweeney, L. B, and J. D. Sterman. 2007. “Thinking about Systems: Student and Teacher Conceptions of Natural and Social Systems.” System Dynamics Review 23 (2–3): 285–311. doi:http://dx.doi.org/10.1002/sdr.366.
  • Taiwan Ministry of Education. 2014. The Twelve-year Compulsory Education: Curriculm Guidlines. Retrieved 2017, December 20, from https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf.
  • Taylor, S., J. Calvo-Amodio, and J. Well. 2020. “A Method for Measuring Systems Thinking Learning.” Systems 8 (2): 11. doi:https://www.mdpi.com/2079-8954/8/2/11.
  • Tytler, R, and D. Swanson. 2020. “Unpacking the Purposes and Potential of Interdisciplinary STEM.” In STEM in Science Education and S in STEM, 242–268. Leiden, The Netherlands: Brill.
  • UNESCO. 2021. “Skills Development and Climate Change Action Plans: Enhancing TVET’s Contribution.” https://unesdoc.unesco.org/ark:/48223/pf0000376163
  • Wachholz, S., N. Artz, and D. Chene. 2014. “Warming to the Idea: University Students’ Knowledge and Attitudes about Climate Change.” International Journal of Sustainability in Higher Education 15 (2): 128–141. doi:10.1108/IJSHE-03-2012-0025.
  • Wiek, A., L. Withycombe, and C. L. Redman. 2011. “Key Competencies in Sustainability: A Reference Framework for Academic Program Development.” Sustainability Science 6 (2): 203–218. doi:10.1007/s11625-011-0132-6.
  • Wilson, S, and L. Zamberlan. 2012. “Show Me Yours: Developing a Faculty-Wide Interdisciplinary Initiative in Built Environment Higher Education.” Contemporary Issues in Education Research (CIER) 5 (4): 331–342. doi:10.19030/cier.v5i4.7430.
  • World Economic Forum. 2021. The Global Risks Report 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.