Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 12, 2005 - Issue 1
88
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Molecular interactions in the formation and deposition of β2-microglobulin-related amyloid fibrils

, , , , &
Pages 15-25 | Received 12 Aug 2004, Accepted 19 Oct 2004, Published online: 06 Jul 2009

References

  • Koch KM. Dialysis-related amyloidosis. Kidney Int 1992;41:1416–1429.
  • Charra B, Calemard E, Uzan M, Terrat JC, Vanel T, Laurent G. Carpal tunnel syndrome, shoulder pain and amyloid deposits in long-term haemodialysis patients. Proc Eur Dial Transplant Assoc 1984;21:291–295.
  • Gejyo F, Arakawa M. Dialysis amyloidosis: current disease concepts and new perspectives for its treatment. Contrib Nephrol 1990;78:47–60.
  • Gejyo F, Yamada T, Odani S, Nakagawa Y, Arakawa M, Kunitomo T, Kataoka H, Suzuki M, Hirasawa Y, Shirahama T, Cohen AS, Schmid K. A new form of amyloid protein associated with chronic hemodialysis was identified as b2-microglobulin. Biochem Biophys Res Commun 1985;129:701–706.
  • Gorevic PD, Munoz PC, Casey TT, DiRaimondo CR, Stone WJ, Prelli FC, Rodrigues MM, Poulik MD, Frangione B. Polymerization of intact b2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci USA 1986;83:7908–7912.
  • Campistol JM, Soleë M, Bombi JA, Rodriguez R, Mirapeix E, Muñ oz-Gomez J, Revert OW. In vitro spontaneous synthesis of b2-microglobulin amyloid fibrils in peripheral blood mononuclear cell culture. Am J Pathol 1992;141:241–247.
  • Campistol JM, Bernard D, Papastoitsis G, Soleë M, Kasirsky J, Skinner M. Polymerization of normal and intact b2-microglobulin as the amyloidogenic protein in dialysis-amyloidosis. Kidney Int 1996;50:1262–1267.
  • Chanard J, Bindi P, Lavaud S, Toupance O, Maheut H, Lacour F. Carpal tunnel syndrome and type of dialysis membrane. Br Med J 1989;298:867–868.
  • van Ypersele de Strihou C, Jadoul M, Malghem J, Maldague B, Jamart J, Working Party on Dialysis Amyloidosis. Effect of dialysis membrane and patient’s age on signs of dialysis-related amyloidosis. Kidney Int 1991;39:1012–1019.
  • Davison AM. b2-Microglobulin and amyloidosis: who is at risk? Nephrol Dial Transplant 1995;10 (Suppl 10):48-51.
  • Ohishi H, Skinner M, Sato-Araki N, Okuyama T, Gejyo F, Kimura A, Cohen AS, Schmid K. Glycosaminoglycans of the hemodialysis-associated carpal synovial amyloid and of amyloid-rich tissues and fibrils of heart, liver, and spleen. Clin Chem 1990;36:88–91.
  • Campistol JM, Shirahama T, Abraham CR, Rodgers OG, Soleë M, Cohen AS, Skinner M. Demonstration of plasma proteinase inhibitors in b2-microglobulin amyloid deposits. Kidney Int 1992;42:915–923.
  • Ohashi K, Hara M, Yanagishita M, Kawai R, Tachibana S, Ogura Y. Proteoglycans in haemodialysis-related amyloidosis. Virchows Arch 1995;427:49–59.
  • Ohashi K, Takagawa R, Hara M. Visceral organ involvement and extracellular matrix changes in b2-microglobulin amyloidosis-a comparative study with systemic AA and AL amyloidosis. Virchows Arch 1997;430:479–487.
  • Inoue S, Kuroiwa M, Ohashi K, Hara M, Kisilevsky R. Ultrastructural organization of hemodialysis-associated b2-microglobulin amyloid fibrils. Kidney Int 1997;52:1543–1549.
  • Ohashi K, Hara M, Kawai R, Ogura Y, Honda K, Nihei H, Mimura N. Cervical discs are most susceptible to beta2-microglobulin amyloid deposition in the vertebral column. Kidney Int 1992;41:1646–1652
  • Garbar C, Jadoul M, Noël H, van Ypersele de Strihou C. Histological characteristics of sternoclavicular b2-microglobulin amyloidosis and clues for its histogenesis. Kidney Int 1999;55:1983–1990.
  • Hardingham TE, Fosang AJ. Proteoglycans: many forms and many functions. FASEB J 1992;6:861–870.
  • Rosenberg LC, Choi HU, Tang LH, Johnson TL, Pal S, Webber C, Reiner A, Poole AR. Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem 1985;260:6304–6313.
  • Fisher LW, Hawkins GR, Tuross N, Termine JD. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 1987;262:9702–9708.
  • Pogaëny G, Hernandez DJ, Vogel KG. The in vitro interaction of proteoglycans with type I collagen is modulated by phosphate. Arch Biochem Biophys 1994;313:102–111.
  • Naiki H, Higuchi K, Nakakuki K, Takeda T. Kinetic analysis of amyloid fibril polymerization in vitro. Lab Invest 1991;65:104–110.
  • Jarrett JT, Lansbury PT Jr. Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 1993;73:1055–1058.
  • Naiki H, Nakakuki K. First-order kinetic model of Alzheimer’s β-amyloid fibril extension in vitro. Lab Invest 1996;74:374–383.
  • Naiki H, Gejyo F, Nakakuki K. Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s β-amyloid fibril formation in vitro. Biochemistry 1997;36:6243–6250.
  • Naiki H, Hashimoto N, Suzuki S, Kimura H, Nakakuki K, Gejyo F. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid: Int J Exp Clin Invest 1997;4:223–232.
  • Kad NM, Thomson NH, Smith DP, Smith DA, Radford SE. b2-Microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J Mol Biol 2001;313:559–571.
  • Xing Y, Nakamura A, Chiba T, Kogishi K, Matsushita T, Li F, Guo Z, Hosokawa M, Mori M, Higuchi K. Transmission of mouse senile amyloidosis. Lab Invest 2001;81:493–499.
  • Lundmark K, Westermark GT, Nystrom S, Murphy CL, Solomon A. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc Natl Acad Sci USA 2002;99:6979–6984.
  • Yamaguchi I, Hasegawa K, Takahashi N, Gejyo F, Naiki H. Apolipoprotein E inhibits the depolymerization of b2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 2001;40:8499–8507.
  • Yamamoto S, Yamaguchi I, Hasegawa K, Tsutsumi S, Goto Y, Gejyo F, Naiki H. Glycosaminoglycans enhansce the trifluoroethanol-induced extension of b2-microglobulin-related amyloid fibrils at a neutral pH. J Am Soc Nephrol 2004;15:126–133.
  • Kelly JW. Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol 1996;6:11–17.
  • Hoshino M, Katou H, Hagihara Y, Hasegawa K, Naiki H, Goto Y. Mapping the core of the b2-microglobulin amyloid fibril by H/D exchange. Nat Struct Biol 2002;9:332–336.
  • Chiti F, Lorenzi ED, Grossi S, Mangione P, Giorgetti S, Caccialanza G, Dobson CM, Merlini G, Ramponi G, Bellotti V. A partially structured species of b2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. J Biol Chem 2001:276:46714-46721.
  • Heegaard NHH, Sen JW, Kaarsholm NC, Nissen MH. Conformational intermediate of the amyloidogenic protein b2-microglobulin at neutral pH. J Biol Chem 2001;276:32657–32662.
  • Chiti F, Mangione P, Andreola A, Giorgetti S, Stefani M, Dobson CM, Bellotti V, Taddei N. Detection of two partially structured species in the folding process of the amyloidogenic protein b2-microglobulin. J Mol Biol 2001;307:379–391.
  • Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophy 1998;31:297–355.
  • Shiraki K, Nishikawa K, Goto Y. Trifluoroethanol-induced stabilization of the a-helical structure of β-lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol 1995;245:180–194.
  • Hamada D, Chiti F, Guijarro JI, Kataoka M, Taddei N, Dobson CM. Evidence concerning rate-limiting steps in protein folding from the effects of trifluoroethanol. Nat Struct Biol 2000;7:58–61.
  • Ohnishi S, Koide A, Koide S. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a β-hairpin in the OspA single-layer β-sheet. J Mol Biol 2000;301:477–489.
  • Fezoui Y, Teplow DB. Kinetic studies of amyloid β-protein fibril assembly. Differential effects of a-helix stabilization. J Biol Chem 2002;277:36948–36954.
  • Andreola A, Bellotti V, Giorgetti S, Mangione P, Obici L, Stoppini M, Torres J, Monzani E, Merlini G, Sunde M. Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein A-I. J Biol Chem 2003;278:2444–2451.
  • Morillas M, Swietnicki W, Gambetti P, Surewicz WK. Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem 1999;274:36859–36865.
  • Ji S, Wu Y, Sui S. Cholesterol is an important factor affecting the membrane insertion of β-amyloid peptide (Ab1-40), which may potentially inhibit the fibril formation. J Biol Chem 2002;277:6273–6279.
  • Reynolds JA, Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem 1970;245:5161–5165.
  • Jirgensons B. Effect of n-propyl alcohol and detergents on the optical rotatory dispersion of a-chymotrypsinogen, β-casein, histone fraction F1, and soybean trypsin inhibitor. J Biol Chem 1967;242:912–918.
  • Mattice WL, Riser JM, Clark DS. Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry 1976;15:4264–4272.
  • Yonath A, Podjarny A, Honig B, Sielecki A, Traub W. Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced structural changes in triclic lysozyme. Biochemistry 1977;16:1418–1424.
  • Hagihara Y, Hong D, Hoshino M, Enjyoji K, Kato H, Goto Y. Aggregation of b2-glycoprotein I induced by sodium lauryl sulfate and lysophospholipids. Biochemistry 2002;41:1020–1026.
  • Pertinhez TA, Bouchard M, Smith RAG, Dobson CM, Smith LJ. Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS. FEBS Lett 2002;529:193–197.
  • Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H. Low concentrations of sodium dodecyl sulfate induce the extension of b2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 2004;43:11075–11082.
  • Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988;240;622-630.
  • Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 1991;541:163–166.
  • Wisniewski T, Frangione B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 1992;135:235–238.
  • Yamada T, Kakihara T, Gejyo F, Okada M. A monoclonal antibody recognizing apolipoprotein E peptides in systemic amyloid deposits. Ann Clin Lab Sci 1994;24:243–249.
  • Kindy MS, King AR, Perry G, de Beer MC, de Beer FC. Association of apolipoprotein E with murine amyloid A protein amyloid. Lab Invest 1995;73:469–475.
  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Englhild J, Salvesen GS, Roses AD. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993;90:1977–1981.
  • Hasegawa H, Nishi S, Ito S, Saeki T, Kuroda T, Kimura H, Watababe T, Nakano M, Gejyo F, Arakawa M. High prevalence of serum apolipoprotein E4 isoprotein in rheumatoid arthritis patients with amyloidosis. Arthritis Rheum 1996;39:1728–1732.
  • Gejyo F, Suzuki S, Kimura H, Imura T, Ei I, Hasegawa H, Arakawa M. Increased risk of dialysis-related amyloidosis in the patients with apolipoprotein E4 allele. Amyloid: Int J Exp Clin Invest 1997;4:13–17.
  • Wisniewski T, Castaño EM, Golabek A, Vogel T, Frangione B. Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 1994;145:1030–1035.
  • Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD, Strittmatter WJ. Apolipoprotein E associates with b amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 1994;94:860–869.
  • Ma J, Yee A, Brewer HB Jr, Das S, Potter H. Amyloidassociated proteins a1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 1994;372:92–94.
  • Castaño EM, Prelli F, Wisniewski T, Golabek A, Kumar RA, Soto C, Frangione B. Fibrillogenesis in Alzheimer’s disease of amyloid b peptides and apolipoprotein E. Biochem J 1995;306:599–604.
  • Golabek AA, Soto C, Vogel T, Wisniewski T. The interaction between apolipoprotein E and Alzheimer’s amyloid β-peptide is dependent on β-peptide conformation. J Biol Chem 1996;271:10602–10606.
  • Wisniewski T, Ghiso J, Frangione B. Alzheimer’s disease and soluble Ab. Neurobiol Aging 1994;15:143–152.
  • Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT Jr. Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 1995;92:763–767.
  • Wood SJ, Chan W, Wetzel R. Seeding of Ab fibril formation is inhibited by all three isotypes of apolipoprotein E. Biochemistry 1996;351:2623–12628.
  • Naiki H, Hasegawa K, Yamaguchi I, Nakamura H, Gejyo F, Nakakuki K. Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer’s β-amyloid fibril formation in vitro. Biochemistry 1998;37:17882–17889.
  • Kindy MS, Rader DJ. Reduction in amyloid A amyloid formation in apolipoprotein-E-deficient mice. Am J Pathol 1998;152:1387–1395.
  • Hoshii Y, Kawano H, Cui D, Takeda T, Gondo T, Takahashi M, Kogishi K, Higuchi K, Ishihara T. Amyloid A protein amyloidosis induced in apolipoprotein-E-deficient mice. Am J Pathol 1997;151:911–917.
  • Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM. Apolipoprotein E is essential for amyloid deposition in the APF (V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 1999;96:15233–15238.
  • Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2000; 97:2892–2897.
  • Ancsin JB. Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid: J Protein Folding Disord 2003;10:67–79.
  • Ancsin JB, Kisilevsky R. The heparin/heparan sulfatebinding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. J Biol Chem 1999; 274:7172–7181.
  • McCubbin WD, Kay CM, Narindrasorasak S, Kisilevsky R. Circular-dichroism studies on two murine serum amyloid A proteins. Biochem J 1988;256:775–783.
  • Snow AD, Bramson R, Mar H, Wight TN, Kisilevsky R. A temporal and ultrastructural relationship between heparan sulfate proteoglycans and AA amyloid in experimental amyloidosis. J Histochem Cytochem 1991;39:1321–1330.
  • Castillo GM, Cummings JA, Yang W, Judge ME, Sheardown MJ, Rimvall K, Hansen JB, Snow AD. Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan’s enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes 1998;47:612–620.
  • McLaurin J, Franklin T, Zhang X, Deng J, Fraser PE. Interactions of Alzheimer amyloid-b peptides with glycosaminoglycans. Effects on fibril nucleation and growth. Eur J Biochem 1999;266:1101–1110.
  • Castillo GM, Ngo C, Cummings J, Wight TN, Snow AD. Perlecan binds to the β-amyloid proteins (Ab) of Alzheimer’s disease, accelerates Ab fibril formation, and maintains Ab fibril stability. J Neurochem 1997;69:2452–2465.
  • García-García M, Gouin-Charnet A, Mourad G, Argileës A. Monomeric and dimeric b2-microglobulin may be extracted from amyloid deposits in vitro. Nephrol Dial Transplant 1997;12:1192–1198.
  • Jadoul M, Malgahem J, Pirson Y, Maldague B, van Ypersele de Strihou C. Effect of renal transplantation on the radiological signs of dialysis amyloid osteoarthropathy. Clin Nephrol 1989;32:194–197.
  • Campistol JM, Ponz E, Munãoz-Goëmez J, Oppenheimer F, Ricard MJ, Vilardell J, Andreu J. Renal transplantation for dialysis amyloidosis. Transplant Proc 1992;24:118–119.
  • Bardin T, Lebail-Darneë JL, Zingraff J, Laredo JD, Voisin MC, Kreis H, Kuntz D. Dialysis arthropathy: outcome after renal transplantation. Am J Med 1995;99:243–248.
  • Nelson SR, Hawkins PN, Richardson S, Lavender JP, Sethi D, Gower PE, Pugh CW, Winearls CG, Oliver DO, Pepys MB. Imaging of haemodialysis-associated amyloidosis with 123I-serum amyloid P component. Lancet 1991;338:335–339.
  • Tan SY, Irish A, Winearls CG, Brown EA, Gower PE, Clutterbuck EJ, Madhoo S, Lavender JP, Pepys MB, Hawkins PN. Long term effect of renal transplantation on dialysis-related amyloid depositis and symptomatology. Kidney Int 1996;50:282–289.
  • Yamaguchi I, Suda H, Tsuzuike N, Seto K, Seki M, Yamaguchi Y, Hasegawa K, Takahashi N, Yamamoto S, Gejyo F, Naiki H. Glycosaminoglycan and proteoglycan inhibit the depolymerization of β-microglobulin amyloid fibrils in vitro. Kidney Int 2003;64:1080–1088.
  • Castanão EM, Prelli F, Pras M, Frangione B. Apolipoprotein E carboxyl-terminal fragments are complexed to amyloid A and L. Implications for amyloidogenesis and Alzheimer’s disease. J Biol Chem 1995;270:17610–17615.
  • McLaurin J, Fraser PE. Effect of amino-acid substitutions on Alzheimer’s amyloid-b peptide-glycosaminoglycan interactions. Eur J Biochem 2000;267:6353–6361.
  • Ohashi K, Kisilevsky R, Yanagishita M. Affinity binding of glycosaminoglycans with β-microglobulin. Nephron 2002; 90:158–168.
  • Iozzo RV. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 1997;32:141–174.
  • Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998;67:609–652.
  • Schonherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H. Interaction of biglycan with type I collagen. J Biol Chem 1995;270:2776–2783.
  • Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-b by the proteoglycan decorin. Nature 1990;346:281–284.
  • Hocking AM, Strugnell RA, Ramamurthy P, McQuillan DJ. Eukaryotic expression of recombinant biglycan. Post-translational processing and the importance of secondary structure for biological activity. J Biol Chem 1996;271:19571–19577.
  • Krumdieck R, Höök M, Rosenberg LC, Volanakis JE. The proteoglycan decorin binds C1q and inhibits the activity of the C1 complex. J Immunol 1992;149:3695–3701.
  • Gupta-Bansal R, Frederickson RC, Brunden KR. Proteogly-can-mediated inhibition of Ab proteolysis. A potential cause of senile plaque accumulation. J Biol Chem 1995;270:18666–18671.
  • Lomakin A, Teplow DB, Kirschner DA, Benedek GB. Kinetic theory of fibrillogenesis of amyloid β-protein. Proc Natl Acad Sci USA 1997;94:7942–7947.
  • Fraser PE, Darabie AA, McLaurin JA. Amyloid-b interactions with chondroitin sulfate-derived monosaccharides and disaccharides. Implications for drug development. J Biol Chem 2001;276:6412–6419.
  • Togashi S, Lim SK, Kawano H, Ito S, Ishihara T, Okada Y, Nakano S, Kinoshita T, Horie K, Episkopou V, Gottesman ME, Costantini F, Shimada K, Maeda S. Serum amyloid P component enhances induction of murine amyloidosis. Lab Invest 1997;77:525–531.
  • Tennent GA, Lovat LB, Pepys MB. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci USA 1995;92:4299–4303.
  • Gejyo F, Homma N, Suzuki Y, Arakawa M. Serum levels of β-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N Engl J Med 1986;314:585–586.
  • Roughley PJ, White RJ, Magny MC, Liu J, Pearce RH, Mort JS. Non-proteoglycan forms of biglycan increase with age in human articular cartilage. Biochem J 1993;295:421–426.
  • Roughley PJ, Melching LI, Recklies AD. Changes in the expression of decorin and biglycan in human articular cartilage with age and regulation by TGF-b. Matrix Biol 1994;14:51–59.
  • Sztrolovics R, Alini M, Mort JS, Roughley PJ. Age-related changes in fibromodulin and lumican in human intervertebral discs. Spine 1999;24:1765–1771.
  • McAlinden A, Dudhia J, Bolton MC, Lorenzo P, Heinegard D, Bayliss MT. Age-related changes in the synthesis and mRNA expression of decorin and aggrecan in human meniscus and articular cartilage. Osteoarthritis Cartilage 2001;9:33–41.
  • Jadoul M, Garbar C, Vanholder R, Sennesael J, Michel C, Robert A, Noël H, van Ypersele de Strihou C. Prevalence of histological β2-microglobulin amyloidosis in CAPD patients compared with hemodialysis patients. Kidney Int 1998;54:956–959.
  • Shao H, Jao S, Ma K, Zagorski MG. Solution structures of micell-bound amyloid β-(1-40) and β-(1-42) peptides of Alzheimer’s disease. J Mol Biol 1999;285:755–773.
  • Yanagisawa K, Odaka A, Suzuki N, Ihara Y. GM 1 ganglio-side-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1995;1:1062–1066.
  • Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K. Cholesterol-dependent formation of GM 1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 2001;276:24985–24990.
  • Sasagawa K, Suzuki K, Shiota T, Kondo T, Okita M. The significance of plasma lysophospholipids in patients with renal failure on hemodialysis. J Nutr Sci Vitaminol 1998;44:809–818.
  • Kisilevsky R, Lemieux LJ, Fraser PE, Kong X, Hultin PG, Szarek WA. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat Med 1995;1:143–148.
  • Kisilevsky R, Szarek WA. Novel glycosaminoglycan precursors as anti-amyloid agents part II. J Mol Neurosci 2002;19:45–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.