Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 28, 2021 - Issue 2
183
Views
0
CrossRef citations to date
0
Altmetric
Articles

Early events in light chain aggregation at physiological pH reveal new insights on assembly, stability, and aggregate dissociation

ORCID Icon & ORCID Icon
Pages 113-124 | Received 13 Jun 2020, Accepted 12 Jan 2021, Published online: 03 Feb 2021

References

  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–366.
  • Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5:15–22.
  • Merlini G, Stone MJ. Dangerous small B-cell clones. Blood. 2006;108:2520–2530.
  • Buxbaum J. Mechanisms of disease: monoclonal immunoglobulin deposition. Amyloidosis, light chain deposition disease, and light and heavy chain deposition disease. Hematol Oncol Clin North Am. 1992;6:323–346.
  • Solomon A. Light chains of human immunoglobulins. Meth Enzymol. 1985;116:101–121.
  • Palladini G, Sachchithanantham S, Milani P, et al. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood. 2015;126:612–615.
  • Blancas-Mejia LM, Ramirez-Alvarado M. Systemic amyloidoses. Annu Rev Biochem. 2013;82:745–774.
  • Dispenzieri A, Gertz MA, Buadi F. What do I need to know about immunoglobulin light chain (AL) amyloidosis? Blood Rev. 2012;26:137–154.
  • Blancas-Mejia LM, Hammernik J, Marin-Argany M, et al. Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans. J Biol Chem. 2015;290:4953–4965.
  • Blancas-Mejia LM, Tischer A, Thompson JR, et al. Kinetic control in protein folding for light chain amyloidosis and the differential effects of somatic mutations. J Mol Biol. 2014;426:347–361.
  • Misra P, Blancas-Mejia LM, Ramirez-Alvarado M. Mechanistic Insights into the early events in the aggregation of immunoglobulin light chains. Biochemistry. 2019;58:3155–3168.
  • Baden EM, Owen BA, Peterson FC, et al. Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem. 2008;283:15853–15860.
  • Randles EG, Thompson JR, Martin DJ, et al. Structural alterations within native amyloidogenic immunoglobulin light chains. J Mol Biol. 2009;389:199–210.
  • Kim Y, Wall JS, Meyer J, et al. Thermodynamic modulation of light chain amyloid fibril formation. J Biol Chem. 2000;275:1570–1574.
  • Wall J, Schell M, Murphy C, et al. Thermodynamic instability of human lambda 6 light chains: correlation with fibrillogenicity. Biochemistry. 1999;38:14101–14108.
  • Baden EM, Randles EG, Aboagye AK, et al. Structural insights into the role of mutations in amyloidogenesis. J Biol Chem. 2008;283:30950–30956.
  • Marin-Argany M, Guell-Bosch J, Blancas-Mejia LM, et al. Mutations can cause light chains to be too stable or too unstable to form amyloid fibrils. Protein Sci. 2015;24:1829–1840.
  • Abraham RS, Geyer SM, Price-Troska TL, et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood. 2003;101:3801–3808.
  • Sikkink LA, Ramirez-Alvarado M. Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain. Biophys Chem. 2008;135:25–31.
  • DiCostanzo AC, Thompson JR, Peterson FC, et al. Tyrosine residues mediate fibril formation in a dynamic light chain dimer interface. J Biol Chem. 2012;287:27997–28006.
  • Blancas-Mejia LM, Misra P, Dick CJ, et al. Assays for light chain amyloidosis formation and cytotoxicity. Meth Mol Biol. 2019;1873:123–153.
  • O'Nuallain B, Thakur AK, Williams AD, et al. Kinetics and thermodynamics of amyloid assembly using a high-performance liquid chromatography-based sedimentation assay. Methods Enzymol. 2006;413:34–74.
  • Albinsson B, Norden B. Excited-state properties of the indole chromophore: electronic transition moment directions from linear dichroism measurements: effect of methyl and methoxy substituents. J Phys Chem. 1992;96:6204–6212.
  • Sreerama N, Manning MC, Powers ME, et al. Tyrosine, phenylalanine, and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin inhibitor. Biochemistry. 1999;38:10814–10822.
  • Chen SW, Drakulic S, Deas E, et al. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc Natl Acad Sci USA. 2015;112:E1994–2003.
  • Reixach N, Deechongkit S, Jiang X, et al. Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA. 2004;101:2817–2822.
  • Smith DP, Radford SE, Ashcroft AE. Elongated oligomers in beta2-microglobulin amyloid assembly revealed by ion mobility spectrometry-mass spectrometry. Proc Natl Acad Sci USA. 2010;107:6794–6798.
  • Takahashi Y, Okamoto Y, Popiel HA, et al. Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy. J Biol Chem. 2007;282:24039–24048.
  • Peterson FC, Baden EM, Owen BA, et al. A single mutation promotes amyloidogenicity through a highly promiscuous dimer interface. Structure. 2010;18:563–570.
  • Adams PD, Chen Y, Ma K, et al. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc. 2002;124:9278–9286.
  • Chen Y, Barkley MD. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998;37:9976–9982.
  • Williams AD, Portelius E, Kheterpal I, et al. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol. 2004;335:833–842.
  • Foguel D, Suarez MC, Ferrao-Gonzales AD, et al. Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA. 2003;100:9831–9836.
  • Torrent J, Alvarez-Martinez MT, Heitz F, et al. Alternative prion structural changes revealed by high pressure. Biochemistry. 2003;42:1318–1325.
  • Marin-Argany M, Lin Y, Misra P, et al. Cell damage in light chain amyloidosis: fibril internalization, toxicity and cell-mediated seeding. J Biol Chem. 2016;291:19813–19825.
  • McWilliams-Koeppen HP, Foster JS, Hackenbrack N, et al. Light chain amyloid fibrils cause metabolic dysfunction in human cardiomyocytes. PLoS One. 2015;10:e0137716.
  • Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94:1008–1010.
  • Imperlini E, Gnecchi M, Rognoni P, et al. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep. 2017;7:15661.
  • Breydo L, Uversky VN. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett. 2015;589:2640–2648.
  • Fandrich M. Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol. 2012;421:427–440.
  • Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.