1,081
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Reward boosts working memory encoding over a brief temporal window

, , &
Pages 291-312 | Received 01 Jun 2014, Accepted 26 Jan 2015, Published online: 06 Mar 2015

REFERENCES

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381. doi:10.1146/annurev.ne.09.030186.002041
  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. doi:10.1111/j.0963-7214.2004.01502006.x
  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108, 10367–10371. doi:10.1073/pnas.1104047108
  • Braver, T. S., & Cohen, J. D. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. Control of Cognitive Processes: Attention and Performance XVIII, 713–737.
  • Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7, 415–423. doi:10.1016/S1364-6613(03)00197-9
  • D'Ardenne, K., Eshel, N., Luka, J., Lenartowicz, A., Nystrom, L. E., & Cohen, J. D. (2012). Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proceedings of the National Academy of Sciences, 109, 19900–19909.
  • Frank, M. J., Loughry, B., & O'Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, & Behavioral Neuroscience, 1, 137–160.
  • Fuster, J. M. (1990). Prefrontal cortex and the bridging of temporal gaps in the perception‐action cycle. Annals of the New York Academy of Sciences, 608, 318–336. doi:10.1111/j.1749-6632.1990.tb48901.x
  • Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, New Series, 173, 652–654.
  • Hazy, T. E., Frank, M. J., & O'Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London: B, Biological Sciences, 362, 1601–1613. doi:10.1098/rstb.2007.2055
  • Jacobsen, C. F., & Nissen, H. W. (1937). Studies of cerebral function in primates. IV. The effects of frontal lobe lesions on the delayed alternation habit in monkeys. Journal of Comparative Psychology, 23(1), 101–112. doi:10.1037/h0056632
  • Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110–113. doi:10.1126/science.1154735
  • Land, M., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28(11), 1311–1328. doi:10.1068/p2935
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi:10.1038/36846
  • McNab, F., & Klingberg, T. (2007). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107. doi:10.1038/nn2024
  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42, 183–200. doi:10.1006/brcg.1999.1099
  • Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425. doi:10.1016/S0301-0082(96)00042-1
  • Murray, A. M., Nobre, A. C., & Stokes, M. G. (2011). Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 49, 1458–1465. doi:10.1016/j.neuropsychologia.2011.02.016
  • Nobre, A., Correa, A., & Coull, J. (2007). The hazards of time. Current Opinion in Neurobiology, 17, 465–470. doi:10.1016/j.conb.2007.07.006
  • Olivers, C. N. L., & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115, 836–863. doi:10.1037/a0013395
  • Raymond, J. E., & O'Brien, J. L. (2009). Selective visual attention and motivation the consequences of value learning in an attentional blink task. Psychological Science, 20, 981–988. doi:10.1111/j.1467-9280.2009.02391.x
  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023. doi:10.1016/S0306-4522(98)00319-4
  • Rohenkohl, G., & Nobre, A. C. (2011). Alpha oscillations related to anticipatory attention follow temporal expectations. Journal of Neuroscience, 31, 14076–14084. doi:10.1523/JNEUROSCI.3387-11.2011
  • Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64, 754–763. doi:10.3758/BF03194742
  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27.
  • Schultz, W. (2013). Updating dopamine reward signals. Current Opinion in Neurobiology, 23, 229–238. doi:10.1016/j.conb.2012.11.012
  • Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1997). The attentional blink. Trends in Cognitive Sciences, 1, 291–296. doi:10.1016/S1364-6613(97)01094-2
  • Slagter, H. A., Tomer, R., Christian, B. T., Fox, A. S., Colzato, L. S., King, C. R., … Davidson, R. J. (2012). PET evidence for a role for striatal dopamine in the attentional blink: Functional implications. Journal of Cognitive Neuroscience, 24, 1932–1940. doi:10.1109/42.906424
  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11), 1–29. doi:10.1037/h0093759
  • Theeuwes, J., & Belopolsky, A. V. (2012). Reward grabs the eye: Oculomotor capture by rewarding stimuli. Vision Research, 74, 80–85. doi:10.1016/j.visres.2012.07.024
  • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi:10.1038/nature06860

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.