358
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Normal and abnormal category-effects in visual object recognition: A legacy of Glyn W. Humphreys

Pages 60-78 | Received 14 Jul 2016, Accepted 02 Nov 2016, Published online: 28 Nov 2016

References

  • Arguin, M., Bub, D., & Dudek, G. (1996). Shape integration for visual object recognition and Its implication in category-specific visual agnosia. Visual Cognition, 3(3), 221–276. doi:10.1080/713756740
  • Behrmann, M., Peterson, M. A., Moscovitch, M., & Suzuki, S. (2006). Independent representation of parts and the relations between them: Evidence from integrative agnosia. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1169–1184. doi:10.1037/0096-1523.32.5.1169
  • Behrmann, M., & Williams, P. (2007). Impairments in part-whole representations of objects in two cases of integrative visual agnosia. Cognitive Neuropsychology, 24(7), 701–730. doi:10.1080/02643290701672764
  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115–117. doi: 10.1037/0033-295X.94.2.115
  • Boucart, M., & Humphreys, G. W. (1992a). The computation of perceptual structure from collinearity and closure: Normality and pathology. Neuropsychologia, 30(6), 527–546. doi: 10.1016/0028-3932(92)90056-R
  • Boucart, M., & Humphreys, G. W. (1992b). Global shape cannot be attended without object identification. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 785–806.
  • Boucart, M., Lenoble, Q., Quettelart, J., Szaffarczyk, S., Despretz, P., & Thorpe, S. J. (2016). Finding faces, animals, and vehicles in far peripheral vision. Journal of Vision, 16(2), 10. doi:10.1167/16.2.10
  • Bracci, S., & Op de Beeck, H. (2016). Dissociations and associations between shape and category representations in the two visual pathways. Journal of Neuroscience, 36(2), 432–444. doi:10.1523/jneurosci.2314-15.2016
  • Chen, L., & Rogers, T. T. (2014). Revisiting domain-general accounts of category specificity in mind and brain. Wiley Interdisciplinary Reviews: Cognitive Science, 5(3), 327–344. doi:10.1002/wcs.1283
  • Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology: General, 132(2), 163–201. doi: 10.1037/0096-3445.132.2.163
  • Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10(4), 1–17. doi:10.1167/10.4.16
  • Crouzet, S. M., & Thorpe, S. J. (2011). Low-level cues and ultra-fast face detection. Front Psychol, 2, 342. doi:10.3389/fpsyg.2011.00342
  • Davidoff, J., & Warrington, E. K. (1999). The bare bones of object recognition: Implications from a case of object recognition impairment. Neuropsychologia, 37(3), 279–292. doi: 10.1016/S0028-3932(98)00076-1
  • De Renzi, E., & Lucchelli, F. (1994). Are semantic systems separately represented in the brain? The case of living category impairment. Cortex, 30(1), 3–25. doi: 10.1016/S0010-9452(13)80322-X
  • Dixon, M. J., Bub, D. N., & Arguin, M. (1998). Semantic and visual determinants of face recognition in a prosopagnosic patient. Journal of Cognitive Neuroscience, 10(3), 362–376. doi: 10.1162/089892998562799
  • Donderi, D. C. (2006). Visual complexity: A review. Psychological Bulletin, 132(1), 73–97. doi:10.1037/0033-2909.132.1.73
  • Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Ward, R., Kyllingsbaek, S., … Chavda, S. (2003). Attentional functions in dorsal and ventral simultanagnosia. Cognitive Neuropsychology, 20(8), 675–701. doi:10.1080/02643290342000041
  • Esterman, M., & Yantis, S. (2010). Perceptual expectation evokes category-selective cortical activity. Cerebral Cortex, 20(5), 1245–1253. doi:10.1093/cercor/bhp188
  • Etcoff, N. L., Freeman, R., & Cave, K. R. (1991). Can we lose memories of faces? Content specificity and awareness in a prosopagnosic. Journal of Cognitive Neuroscience, 3(1), 25–41. doi:10.1162/jocn.1991.3.1.25
  • Fabre-Thorpe, M., Delorme, A., Marlot, C., & Thorpe, S. (2001). A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. Journal of Cognitive Neuroscience, 13(2), 171–180. doi: 10.1162/089892901564234
  • Farah, M. J., Hammond, K. M., Mehta, Z., & Ratcliff, G. (1989). Category-specificity and modality-specificity in semantic memory. Neuropsychologia, 27(2), 193–200. doi: 10.1016/0028-3932(89)90171-1
  • Farah, M. J., McMullen, P. A., & Meyer, M. M. (1991). Can recognition of living things be selectively impaired? Neuropsychologia, 29(2), 185–193. doi: 10.1016/0028-3932(91)90020-9
  • Funnell, E. (2000). Apperceptive agnosia and the visual recognition of object categories in dementia of the Alzheimer type. Neurocase, 6(6), 451–463. doi:10.1080/13554790008402716
  • Funnell, E., & Sheridan, J. (1992). Categories of knowledge? Unfamiliar aspects of living and nonliving things. Cognitive Neuropsychology, 9(2), 135–153. doi:10.1080/02643299208252056
  • Gale, T. M., Laws, K. R., & Foley, K. (2006). Crowded and sparse domains in object recognition: Consequences for categorization and naming. Brain and Cognition, 60(2), 139–145. doi:10.1016/j.bandc.2005.10.003
  • Gerlach, C. (2001). Structural similarity causes different category-effects depending on task characteristics. Neuropsychologia, 39(9), 895–900. doi: 10.1016/S0028-3932(01)00031-8
  • Gerlach, C. (2009). Category-specificity in visual object recognition. Cognition, 111(3), 281–301. doi:10.1016/j.cognition.2009.02.005
  • Gerlach, C., Aaside, C. T., Humphreys, G. W., Gade, A., Paulson, O. B., & Law, I. (2002). Brain activity related to integrative processes in visual object recognition: Bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia, 40(8), 1254–1267. doi: 10.1016/S0028-3932(01)00222-6
  • Gerlach, C., Law, I., Gade, A., & Paulson, O. B. (1999). Perceptual differentiation and category effects in normal object recognition: A PET study. Brain, 122(Pt 11), 2159–2170. doi: 10.1093/brain/122.11.2159
  • Gerlach, C., Law, I., Gade, A., & Paulson, O. B. (2000). Categorization and category effects in normal object recognition: A PET study. Neuropsychologia, 38(13), 1693–1703. doi: 10.1016/S0028-3932(00)00082-8
  • Gerlach, C., Law, I., & Paulson, O. B. (2006). Shape configuration and category-specificity. Neuropsychologia, 44(7), 1247–1260. doi:10.1016/j.neuropsychologia.2005.09.010
  • Gerlach, C., & Marques, J. F. (2014). Visual complexity exerts opposing effects on object categorization and identification. Visual Cognition, 22(6), 751–769. doi:10.1080/13506285.2014.915908
  • Gerlach, C., Marstrand, L., Habekost, T., & Gade, A. (2005). A case of impaired shape integration: Implications for models of visual object processing. Visual Cognition, 12(8), 1409–1443. doi: 10.1080/13506280444000751
  • Gerlach, C., & Toft, K. O. (2011). Now you see it, now you Don't: The context dependent nature of category-effects in visual object recognition. Visual Cognition, 19(10), 1262–1297. doi:10.1080/13506285.2011.630044
  • Gerlach, C., Zhu, X., & Joseph, J. E. (2015). Structural similarity exerts opposing effects on perceptual differentiation and categorization: An FMRI study. Journal of Cognitive Neuroscience, 27(5), 974–987. doi:10.1162/jocn_a_00748
  • Giersch, A., Humphreys, G. W., Boucart, M., & Kovacs, I. (2000). The computation of occluded contours in visual agnosia: Evidence for early computation prior to shape binding and figure-ground coding. Cognitive Neuropsychology, 17(8), 731–759. doi:10.1080/026432900750038317
  • Hahn, U., & Chater, N. (1997). Concepts and similarity. In K. L. D. R. Shanks (Eds.), Knowledge, concepts and categories (pp. 43–92). Cambridge, MA: The MIT Press.
  • Humphreys, G. W. (1999). Integrative agnosia case studies in the neuropsychology of vision (pp. 41–58). Hove: Psychology Press/Taylor & Francis (UK).
  • Humphreys, G. W., & Forde, E. M. (2001). Hierarchies, similarity, and interactivity in object recognition: “category-specific” neuropsychological deficits. Behav Brain Sci, 24(3), 453–476. discussion 476-509.
  • Humphreys, G. W., & Riddoch, M. J. (1987). On telling your fruit from your vegetables: A consideration of category-specific deficits after brain damage. Trends in Neurosciences, 10(4), 145–148. doi: 10.1016/0166-2236(87)90040-3
  • Humphreys, G. W., & Riddoch, M. J. (2002). Do pixel-level analyses describe psychological perceptual similarity? A comment on ‘category-specific naming and the ‘visual’ characteristics of line drawn stimuli’ by Laws and Gale. Cortex, 38(1), 3–5. doi: 10.1016/S0010-9452(08)70634-8
  • Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5(1), 67–104. doi:10.1080/02643298808252927
  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. J Neurosci, 17(11), 4302–4311.
  • Kimchi, R. (2000). The perceptual organization of visual objects: A microgenetic analysis. Vision Research, 40(10–12), 1333–1347. http://dx.doi.org/10.1016/S0042-6989(00)00027-4
  • Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited. Vision Research, 46(11), 1762–1776. doi:10.1016/j.visres.2005.10.002
  • Kitterle, F. L., & Christman, S. (1991). Symmetries and asymmetries in the processing of sinusoidal gratings. In F. L. Kitterle (Eds.), Cerebral laterality: Theory and research (pp. 201–224). Hillsdale, NJ: Erlbaum.
  • Kubilius, J., Bracci, S., & Op de Beeck, H. P. (2016). Deep neural networks as a computational model for human shape sensitivity. PLOS Computational Biology, 12(4), e1004896. doi:10.1371/journal.pcbi.1004896
  • Lamberts, K. (2001). Category-specific deficits and exemplar models. Behavioral and Brain Sciences, 24(03), 484–485.
  • Lamberts, K., & Shapiro, L. (2002). Exemplar models and category-specific deficits. In E. Forde, & G. W. Humphreys (Eds.), Category-specificity in brain and mind (pp. 291–314). Hove, East Sussex: Psychology Press.
  • Laws, K. R., & Gale, T. M. (2002). Category-specific naming and the ‘visual’ characteristics of line drawn stimuli. Cortex, 38(1), 7–21. doi: 10.1016/S0010-9452(08)70635-X
  • Laws, K. R., Gale, T. M., & Leeson, V. C. (2003). The influence of surface and edge-based visual similarity on object recognition. Brain and Cognition, 53(2), 232–234. doi: 10.1016/S0278-2626(03)00154-4
  • Laws, K. R., & Neve, C. (1999). A normal’ category-specific advantage for naming living things. Neuropsychologia, 37(11), 1263–1269. doi: 10.1016/S0028-3932(99)00018-4
  • Låg, T., Hveem, K., Ruud, K. P., & Laeng, B. (2006). The visual basis of category effects in object identification: Evidence from the visual hemifield paradigm. Brain and Cognition, 60(1), 1–10. doi:10.1016/j.bandc.2005.08.002
  • Leyton, M. (2006). Shape as memory : A geometric theory of architecture. Basel: Birkhäuser - Publishers for Architecture.
  • Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron, 62(2), 281–290. doi:10.1016/j.neuron.2009.02.025
  • Lloyd-Jones, T. J., & Humphreys, G. W. (1997). Perceptual differentiation as a source of category effects in object processing: Evidence from naming and object decision. Memory & Cognition, 25(1), 18–35. doi: 10.3758/BF03197282
  • Lloyd-Jones, T. J., & Nettlemill, M. (2007). Sources of error in picture naming under time pressure. Memory & Cognition, 35(4), 816–836. doi: 10.3758/BF03193317
  • Mace, M. J., Joubert, O. R., Nespoulous, J. L., & Fabre-Thorpe, M. (2009). The time-course of visual categorizations: You spot the animal faster than the bird. PLoS One, 4(6), e5927. doi:10.1371/journal.pone.0005927
  • Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological perspective. Annual Review of Psychology, 60, 27–51. doi:10.1146/annurev.psych.60.110707.163532
  • Mauri, A., Daum, I., Sartori, G., Riesch, G., & Birbaumer, N. (1994). Category-specific semantic impairment in alzheimer's disease and temporal lobe dysfunction: A comparative study. Journal of Clinical and Experimental Neuropsychology, 16(5), 689–701. doi:10.1080/01688639408402682
  • McCarthy, R. A., & Warrington, E. K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334(6181), 428–430. doi:10.1038/334428a0
  • Moore, C. J., & Price, C. J. (1999). A functional neuroimaging study of the variables that generate category-specific object processing differences. Brain, 122(Pt 5), 943–962. doi: 10.1093/brain/122.5.943
  • Naselaris, T., & Kay, K. N. (2015). Resolving ambiguities of MVPA using explicit models of representation. Trends in Cognitive Sciences, 19(10), 551–554. doi:10.1016/j.tics.2015.07.005
  • Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383. doi: 10.1016/0010-0285(77)90012-3
  • Navon, D. (2003). What does a compound letter tell the psychologist's mind? Acta Psychologica, 114(3), 273–309. doi: 10.1016/j.actpsy.2003.06.002
  • Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 39–57. doi: 10.1037/0096-3445.115.1.39
  • Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(1), 87–108.
  • Op de Beeck, H. P., Torfs, K., & Wagemans, J. (2008). Perceived shape similarity among unfamiliar objects and the organization of the human object vision pathway. Journal of Neuroscience, 28(40), 10111–10123. doi:10.1523/jneurosci.2511-08.2008
  • Panis, S., & Wagemans, J. (2009). Time-course contingencies in perceptual organization and identification of fragmented object outlines. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 661–687. doi:10.1037/a0013547
  • Perrett, D. I., Smith, P. A., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society B: Biological Sciences, 223(1232), 293–317. doi: 10.1098/rspb.1985.0003
  • Poncet, M., & Fabre-Thorpe, M. (2014). Stimulus duration and diversity do not reverse the advantage for superordinate-level representations: The animal is seen before the bird. European Journal of Neuroscience, 39(9), 1508–1516. doi:10.1111/ejn.12513
  • Price, C. J., & Humphreys, G. W. (1989). The effects of surface detail on object categorization and naming. The Quarterly Journal of Experimental Psychology Section A, 41(4), 797–828. doi: 10.1080/14640748908402394
  • Riddoch, M. J., & Humphreys, G. W. (1987a). A case of integrative visual agnosia. Brain, 110(Pt 6), 1431–1462. doi: 10.1093/brain/110.6.1431
  • Riddoch, M. J., & Humphreys, G. W. (1987b). Picture naming. In G. W. H. M. J. Riddoch (Eds.), Visual object processing: A cognitive neuropsychological approach (pp. 107–143). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • Riddoch, M. J., & Humphreys, G. W. (2004). Object identification in simultanagnosia: When wholes are not the sum of their parts. Cognitive Neuropsychology, 21(2), 423–441. doi:10.1080/02643290342000564
  • Riddoch, M. J., Humphreys, G. W., Gannon, T., Blott, W., & Jones, V. (1999). Memories are made of this: The effects of time on stored visual knowledge in a case of visual agnosia. Brain, 122(Pt 3), 537–559. doi: 10.1093/brain/122.3.537
  • Rudge, P., & Warrington, E. K. (1991). Selective impairment of memory and visual perception in splenial tumours. Brain, 114(Pt 1B), 349–360. doi: 10.1093/brain/114.1.349
  • Sacchett, C., & Humphreys, G. W. (1992). Calling a squirrel a squirrel but a canoe a wigwam: A category-specific deficit for artefactual objects and body parts. Cognitive Neuropsychology, 9(1), 73–86. doi:10.1080/02643299208252053
  • Sanocki, T. (1993). Time course of object identification: Evidence for a global-to-local contingency. Journal of Experimental Psychology: Human Perception and Performance, 19(4), 878–898.
  • Sanocki, T. (2001). Interaction of scale and time during object identification. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 290–302.
  • Sartori, G., & Job, R. (1988). The oyster with four legs: A neuropsychological study on the interaction of visual and semantic information. Cognitive Neuropsychology, 5(1), 105–132. doi:10.1080/02643298808252928
  • Sartori, G., Job, R., Miozzo, M., Zago, S., & Marchiori, G. (1993). Category-specific form-knowledge deficit in a patient with herpes simplex virus encephalitis. Journal of Clinical and Experimental Neuropsychology, 15(2), 280–299. doi:10.1080/01688639308402563
  • Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195–200. doi:10.1111/j.1467-9280.1994.tb00500.x
  • Sergent, J. (1983). Role of the input in visual hemispheric asymmetries. Psychological Bulletin, 93(3), 481–512. doi: 10.1037/0033-2909.93.3.481
  • Shapiro, L. R., & Olson, A. C. (2005). Does normal processing provide evidence of specialised semantic subsystems? Language and Cognitive Processes, 20(6), 697–724. doi:10.1080/01690960400023444
  • Sirigu, A., Duhamel, J. R., & Poncet, M. (1991). The role of sensorimotor experience in object recognition. A case of multimodal agnosia. Brain, 114(Pt 6), 2555–2573. doi: 10.1093/brain/114.6.2555
  • Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning & Memory, 6(2), 174–215.
  • Stewart, F., Parkin, A. J., & Hunkin, N. M. (1992). Naming impairments following recovery from herpes simplex encephalitis: Category-specific? The Quarterly Journal of Experimental Psychology Section A, 44(2), 261–284. doi: 10.1080/02724989243000037
  • Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409. doi:10.1016/j.tics.2009.06.003
  • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522. doi:10.1038/381520a0
  • Torfs, K., Panis, S., & Wagemans, J. (2010). Identification of fragmented object outlines: A dynamic interplay between different component processes. Visual Cognition, 18(8), 1133–1164. doi:10.1080/13506281003693593
  • Tranel, D., Logan, C. G., Frank, R. J., & Damasio, A. R. (1997). Explaining category-related effects in the retrieval of conceptual and lexical knowledge for concrete entities: Operationalization and analysis of factors. Neuropsychologia, 35(10), 1329–1339. doi: 10.1016/S0028-3932(97)00086-9
  • Treisman, A. M. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 1295–1306. doi:10.1098/rstb.1998.0284
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi: 10.1016/0010-0285(80)90005-5
  • Turnbull, O. H., & Laws, K. R. (2000). Loss of stored knowledge of object structure: Implications for “category-specific” deficits. Cognitive Neuropsychology, 17(4), 365–389. doi:10.1080/026432900380445
  • Vitkovitch, M., Humphreys, G. W., & Lloyd-Jones, T. J. (1993). On naming a giraffe a zebra: Picture naming errors across different object categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(2), 243–259. doi:10.1037/0278-7393.19.2.243
  • Warrington, E. K., & McCarthy, R. (1983). Category specific access dysphasia. Brain, 106(Pt 4), 859–878. doi: 10.1093/brain/106.4.859
  • Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107(Pt 3), 829–853. doi: 10.1093/brain/107.3.829
  • Weber, M., Thompson-Schill, S. L., Osherson, D., Haxby, J., & Parsons, L. (2009). Predicting judged similarity of natural categories from their neural representations. Neuropsychologia, 47(3), 859–868. doi:10.1016/j.neuropsychologia.2008.12.029
  • Wu, C. T., Crouzet, S. M., Thorpe, S. J., & Fabre-Thorpe, M. (2015). At 120 msec you can spot the animal but You don't yet know it's a dog. Journal of Cognitive Neuroscience, 27(1), 141–149. doi:10.1162/jocn_a_00701

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.