865
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Facelikeness matters: A parametric multipart object set to understand the role of spatial configuration in visual recognition

, , , , , & show all
Pages 406-421 | Received 04 May 2016, Accepted 25 Jan 2017, Published online: 08 Mar 2017

References

  • Allison, T., Puce, A., Spencer, D. D., & McCarthy, G. (1999). Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex, 9, 415–430. doi: 10.1093/cercor/9.5.415
  • Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565. doi: 10.1162/jocn.1996.8.6.551
  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–117. doi: 10.1037/0033-295X.94.2.115
  • Biederman, I. & Kalocsai, P. (1997). Neurocomputational bases of object and face recognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1358), 1203–1219. doi: 10.1098/rstb.1997.0103
  • Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces. SIGGRAPH’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp. 187–194.
  • Bodamer, J. (1947). Die prosopagnosie. Archiv für Psychiatrie und Nervenkrankheiten Vereinigt mit Zeitschrift für die Gesamte Neurologie und Psychiatrie, 179, 6–53. Partial English translation by Ellis, H. D., & Florence, M. (1990). Cognitive Neuropsychology, 7, 81–105. doi: 10.1007/BF00352849
  • Bornstein, B. (1963). Prosopagnosia. In L. Halpern (Ed.), Problems of dynamic neurology (pp. 283–318). Jerusalem: Hadassah Medical School.
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357
  • Brants, M., Wagemans, J., & Op de Beeck, H. P. (2011). Activation of fusiform face area by Greebles is related to face similarity but not expertise. Journal of Cognitive Neuroscience, 23, 3949–3958. doi: 10.1162/jocn_a_00072
  • Busigny, T., Graf, M., Mayer, E., & Rossion, B. (2010a). Acquired prosopagnosia as a face-specific disorder: Ruling out the general visual similarity account. Neuropsychologia, 48, 2051–2067. doi: 10.1016/j.neuropsychologia.2010.03.026
  • Busigny, T., Joubert, S., Felician, O., Ceccaldi, M., & Rossion, B. (2010b). Holistic perception of the individual face is specific and necessary: Evidence from an extensive case study of acquired prosopagnosia. Neuropsychologia, 48, 4057–4092. doi: 10.1016/j.neuropsychologia.2010.09.017
  • Busigny, T., Van Belle, G., Jemel, B., Hosein, A., Joubert, S., & Rossion, B. (2014). Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe. Neuropsychologia, 56, 312–333. doi: 10.1016/j.neuropsychologia.2014.01.018
  • Caharel, S., Leleu, A., Bernard, C., Viggiano, M. P., Lalonde, R., & Rebaï, M. (2013). Early holistic face-like processing of Arcimboldo paintings in the right occipito-temporal cortex: Evidence from the N170 ERP component. International Journal of Psychophysiology, 90, 157–164. doi: 10.1016/j.ijpsycho.2013.06.024
  • Cassia, M. V., Turati, C., & Simion, F. (2004). Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychological Science, 15, 379–383. doi: 10.1111/j.0956-7976.2004.00688.x
  • Churches, O., Nicholls, M., Thiessen, M., Kohler, M., & Keage, H. (2014). Emoticons in mind: An event-related potential study. Social Neuroscience, 9, 196–202. doi: 10.1080/17470919.2013.873737
  • Clarke, S., Lindemann, A., Maeder, P., Borruat, F.-X., & Assal, G. (1997). Face recognition and postero-inferior hemispheric lesions. Neuropsychologia, 35, 1555–1563. doi: 10.1016/S0028-3932(97)00083-3
  • Cole, M. & Perez-Cruet, J. (1964). Prosopagnosia. Neuropsychologia, 2, 237–246. doi: 10.1016/0028-3932(64)90008-9
  • Cutzu, F. & Edelman, S. (1996). Faithful representation of similarities among three-dimensional shapes in human vision. Proceedings of the National Academy of Sciences, 93, 12046–12050. doi: 10.1073/pnas.93.21.12046
  • Cutzu, F. & Edelman, S. (1998). Representation of object similarity in human vision: Psychophysics and a computational model. Vision Research, 38, 2229–2257. doi: 10.1016/S0042-6989(97)00186-7
  • Damasio, A. R., Damasio, H., & Van Hoesen, G. W. (1982). Prosopagnosia: Anatomic basis and behavioral mechanisms. Neurology, 32, 331–341. doi: 10.1212/WNL.32.4.331
  • Davidenko, N., Remus, D. A., & Grill-Spector, K. (2012). Face-likeness and image variability drive responses in human face-selective ventral regions. Human Brain Mapping, 33, 2334–2349. doi: 10.1002/hbm.21367
  • De Renzi, E., Faglioni, P., & Spinnler, H. (1968). The performance of patients with unilateral brain damage on face recognition tasks. Cortex, 4, 17–34. doi: 10.1016/S0010-9452(68)80010-3
  • Ellis, H. D. & Young, A. W. (1989). Are faces special? In A. W. Young & H. D. Ellis (Eds.), Handbook of research on face processing (pp. 1–26). Amsterdam: Elsevier Science.
  • Farah, M. J., Wilson, K. D., Drain, H. M., & Tanaka, J. W. (1998). What is “special” about face perception? Psychological Review, 105, 482–498. doi: 10.1037/0033-295X.105.3.482
  • Faust, C. (1955). Die Beurteilung der posttraumatischen organischen Wesensveränderung. DMW - Deutsche Medizinische Wochenschrift, 80, 1237–1239. doi: 10.1055/s-0028-1116175
  • Firestone, C., & Scholl, B. J. (2016). Seeing stability: Intuitive physics automatically guides selective attention. Poster presented at the annual meeting of the Vision Sciences Society, St. Pete Beach, FL.
  • Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P., & Gore J. C. (1997). Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Current Biology, 7, 645–651. doi: 10.1016/S0960-9822(06)00291-0
  • Gauthier, I., Behrmann, M., & Tarr, M. J. (1999a). Can face recognition really be dissociated from object recognition? Journal of Cognitive Neuroscience, 11, 349–370. doi: 10.1162/089892999563472
  • Gauthier, I., Behrmann, M., & Tarr, M. J. (2004). Are Greebles like faces? Using the neuropsychological exception to test the rule. Neuropsychologia, 42, 1961–1970. doi: 10.1016/j.neuropsychologia.2004.04.025
  • Gauthier, I., James, T. W., Curby, K. M., & Tarr, M. J. (2003). The influence of conceptual knowledge on visual discrimination. Cognitive Neuropsychology, 20, 507–523. doi: 10.1080/02643290244000275
  • Gauthier, I. & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research, 37, 1673–1682. doi: 10.1016/S0042-6989(96)00286-6
  • Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore J. C. (1999b). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2, 568–573. doi: 10.1038/9224
  • Giese, M. A. & Poggio, T. (2000). Morphable models for the analysis and synthesis of complex motion patterns. International Journal of Computer Vision, 38, 59–73. doi: 10.1023/A:1008118801668
  • Hadjikhani, N., Kveraga, K., Naik, P., & Ahlfors, S. P. (2009). Early (M170) activation of face-specific cortex by face-like objects. Neuroreport, 20, 403–407. doi: 10.1097/WNR.0b013e328325a8e1
  • Hayward, W. G. & Williams, P. (2000). Viewpoint dependence and object discriminability. Psychological Science, 11, 7–12. doi: 10.1111/1467-9280.00207
  • Jeffreys, D. A. (1996). Evoked potential studies of face and object processing. Visual Cognition, 3, 1–38. doi: 10.1080/713756729
  • Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3, 759–763. doi: 10.1038/77664
  • Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception (ECVP Abstr. Suppl.), 36, 1–16.
  • Lades, M., Vorbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R. P., & Konen, W. (1993). Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42, 300–311. doi: 10.1109/12.210173
  • Laguesse, R., Dormal, G., Biervoye, A., Kuefner, D., & Rossion, B. (2012). Extensive visual training in adulthood significantly reduces the face inversion effect. Journal of Vision, 12, 14. doi: 10.1167/12.10.14
  • Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex, 53, 60–77. doi: 10.1016/j.cortex.2014.01.013
  • McKone, E. & Robbins, R. (2011). Are faces special? In A. Calder, G. Rhodes, M. Johnson, & J. Haxby (Eds.), Oxford handbook of face perception (1st ed., pp. 149–176). Oxford, UK: Oxford University Press.
  • Meng, M., Cherian, T., Singal, G., & Sinha, P. (2012). Lateralization of face processing in the human brain. Proceedings of the Royal Society B: Biological Sciences, 279, 2052–2061. doi: 10.1098/rspb.2011.1784
  • Morton, J. & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164–181. doi: 10.1037/0033-295X.98.2.164
  • Nachson, I. (1995). On the modularity of face recognition: The riddle of domain specificity. Journal of Clinical and Experimental Neuropsychology, 17, 256–275. doi: 10.1080/01688639508405122
  • Nederhouser, M., Yue, X., Mangini, M. C., & Biederman, I. (2007). The deleterious effect of contrast reversal on recognition is unique to faces, not objects. Vision Research, 47, 2134–2142. doi: 10.1016/j.visres.2007.04.007
  • Op de Beeck, H. P., Baker, C. I., DiCarlo, J. J., & Kanwisher, N. G. (2006). Discrimination training alters object representations in human extrastriate cortex. Journal of Neuroscience, 26, 13025–13036. doi: 10.1523/JNEUROSCI.2481-06.2006
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366
  • Rossion, B., Dricot, L., Goebel, R., & Busigny, T. (2011). Holistic face categorization in higher order visual areas of the normal and prosopagnosic brain: Toward a non-hierarchical view of face perception. Frontiers in Human Neuroscience, 4, 225. doi: 10.3389/fnhum.2010.00225
  • Rossion, B., Kung, C.-C., & Tarr, M. J. (2004). Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proceedings of the National Academy of Sciences, 101, 14521–14526. doi: 10.1073/pnas.0405613101
  • Schultz, J., Chuang, L., & Vuong, Q. C. (2008). A dynamic object-processing network: Metric shape discrimination of dynamic objects by activation of occipitotemporal, parietal, and frontal cortices. Cerebral Cortex, 18, 1302–1313. doi: 10.1093/cercor/bhm162
  • Sergent, J., Otha, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain, 115, 15–36.
  • Shafto, J., Pyles, J. A., Jew, C. A., & Tarr, M. J. (2015). Greebles actually do look like faces (just not in the way you thought). Poster presented at the annual meeting of Vision Sciences Society, St. Pete Beach, FL.
  • Sheehan, M. J. & Nachman, M. W. (2014). Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nature Communications, 5, 4800. doi: 10.1038/ncomms5800
  • Tanaka, J. W. & Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology Section A, 46, 225–245. doi: 10.1080/14640749308401045
  • Townsend, J. T. & Ashby, F. G. (1983). The stochastic modelling of elementary psychological processes. Cambridge: Cambridge University Press.
  • Vuong, Q. C., Friedman, A., & Read, J. C. A. (2012). The relative weight of shape and non-rigid motion cues in object perception: A model of the parameters underlying dynamic object discrimination. Journal of Vision, 12, 16–16. doi: 10.1167/12.3.16
  • Vuong, Q. C., Peissig, J. J., Harrison, M. C., & Tarr, M. J. (2005). The role of surface pigmentation for recognition revealed by contrast reversal in faces and Greebles. Vision Research, 45, 1213–1223. doi: 10.1016/j.visres.2004.11.015
  • Wong, A. C.-N., Palmeri, T. J., & Gauthier, I. (2009). Conditions for facelike expertise with objects: Becoming a Ziggerin expert-but which type? Psychological Science, 20, 1108–1117. doi: 10.1111/j.1467-9280.2009.02430.x
  • Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81, 141–145. doi: 10.1037/h0027474
  • Yue, X., Biederman, I., Mangini, M. C., von der Malsburg, C., & Amir, O. (2012). Predicting the psychophysical similarity of faces and non-face complex shapes by image-based measures. Vision Research, 55, 41–46. doi: 10.1016/j.visres.2011.12.012
  • Yue, X., Pourladian, I. S., Tootell, R. B., & Ungerleider, L. G. (2014). Curvature-processing network in macaque visual cortex. Proceedings of the National Academy of Sciences, 111, E3467–E3475. doi: 10.1073/pnas.1412616111