119
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Perceiving a part and the whole of narrative scenes with interactive processing between character and surroundings

, ORCID Icon &
Pages 715-739 | Received 31 Aug 2016, Accepted 17 Apr 2017, Published online: 25 May 2017

References

  • Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5, 617–629. doi: 10.1038/nrn1476
  • Baretta, L., Tomitch, L. M. B., MacNair, N., Lim, V. K., & Waldie, K. E. (2009). Influence making while reading narrative and expository texts: An ERP study. Psychology & Neuroscience, 2(2), 137–145. doi: 10.3922/j.psns.2009.2.005
  • Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77–80. doi: 10.1126/science.177.4043.77
  • Biederman, I. (1982). On the semantics of a glance at a scene. In M. Kubory & J. R. Pomerantz (Eds.), Perceptual organization (pp. 213–263). Hillsdale, New Jersey: Lawrence Erlbaum.
  • Biederman, I., Glass, A. L., & Stacy, E. W. (1973). Searching for objects in real-world scenes. Journal of Experimental Psychology, 97(1), 22–27. doi: 10.1037/h0033776
  • Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14, 143–177. doi: 10.1016/0010-0285(82)90007-X
  • Boyce, S. J., & Pollatsek, A. (1992). Identification of objects in scenes: The role of scene background in object naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(3), 531–543. doi: 10.1037/0278-7393.18.3.531
  • Boyce, S. J., Pollatsek, A., & Rayner, K. (1989). Effect of background information on object identification. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 556–566. doi: 10.1037/0096-1523.15.3.556
  • Davenport, J. L. (2007). Consistency effects between objects in scenes. Memory and Cognition, 35(3), 393–401. doi: 10.3758/BF03193280
  • Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15(8), 559–564. doi: 10.1111/j.0956-7976.2004.00719.x
  • Delplanque, S., N’diaye, K., Scherer, K., & Grandjean, D. (2007). Spatial frequencies or emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis. Journal of Neuroscience Methods, 165(1), 144–150. doi: 10.1016/j.jneumeth.2007.05.030
  • Dobel, C., Gumnior, H., Bölte, J., & Zwitserlood, P. (2007). Describing scenes hardly seen. Acta Psychologica, 125(2), 129–143. doi: 10.1016/j.actpsy.2006.07.004
  • Driver, J., & Baylis, G. C. (1996). Attention and visual object segmentation. In R. Parasuraman (Ed.), The attentive brain (pp. 299–325). Cambridge, MA: MIT Press.
  • Enns, J. T., & Lleras, A. (2008). What’s next? New evidence for prediction in human vision. Trends in Cognitive Sciences, 12(9), 327–333. doi: 10.1016/j.tics.2008.06.001
  • Fiorentini, A., Maffei, L., & Sandini, G. (1983). The role of high spatial frequencies in face perception. Perception, 12, 195–201. doi: 10.1068/p120195
  • Gibson, B. S., & Peterson, M. A. (1994). Does orientation-independent object recognition precede orientation-dependent recognition? Evidence from a cueing paradigm. Journal of Experimental Psychology: Human Perception and Performance, 20, 299–316. doi: 10.1037/0096-1523.20.2.299
  • Ginsburg, A. P. (1980). Specifying relevant spatial information for image evaluation and display design: An explanation of how we see certain objects. Proceedings of the Society for Information Display, 21, 219–227.
  • Hafri, A., Papafragou, A., & Trueswell, J. C. (2013). Getting the gist of events: Recognition of two-participant actions from brief displays. Journal of Experimental Psychology: General, 142(3), 880–905. doi: 10.1037/a0030045
  • Hegdé, J. (2008). Time course of visual perception: Coarse-to-fine processing and beyond. Progress in Neurobiology, 84(4), 405–439. doi: 10.1016/j.pneurobio.2007.09.001
  • Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of Psychology, 50, 243–271. doi: 10.1146/annurev.psych.50.1.243
  • Hochber, J. E. (1971). Machines should not see as people do, but must know how people see. Computer Vision, Graphics and Image Processing, 39, 221–237.
  • Hollingworth, A., & Henderson, J. M. (1998). Does consistent scene context facilitate object perception? Journal of Experimental Psychology: General, 127, 398–415. doi: 10.1037/0096-3445.127.4.398
  • Hollingworth, A., & Henderson, J. M. (1999). Object identification is isolated from scene semantic constraint: Evidence form object type and token discrimination. Acta Psychologica, 102(2–3), 319–343. doi: 10.1016/S0001-6918(98)00053-5
  • Joubert, O. R., Rousselet, G. A., Fize, D., & Fabre-Thorpe, M. (2007). Processing scene context: Fast categorization and object interference. Vision Research, 47, 3286–3297. doi: 10.1016/j.visres.2007.09.013
  • Kauffmann, L., Ramanoël, S., & Peyrin, C. (2014). The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 8(37), 1–14. doi: 10.3389/fnint.2014.00037
  • Klymenko, V., & Weisstein, N. (1986). Spatial frequency differences can determine figure-ground organization. Journal of Experimental Psychology: Human Perception and Performance, 12(3), 324–330. doi: 10.1037/0096-1523.12.3.324
  • Mack, M. L., & Palmeri, T. J. (2010). Modeling categorization of scenes containing consistent versus inconsistent objects. Journal of Vision, 10(3), 1–11. doi: 10.1167/10.3.11
  • Norman, J., & Ehrlich, S. (1987). Spatial frequency filtering and target identification. Vision Research, 27(1), 87–96. doi: 10.1016/0042-6989(87)90145-3
  • Oliva, A., & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology, 41, 176–210. doi: 10.1006/cogp.1999.0728
  • Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global features in recognition. Progress in Brain Research, 155, 23–36. doi: 10.1016/S0079-6123(06)55002-2
  • Peterson, M. A. (1994). Object recognition processes can and do operate before figure-ground organization. Current Directions in Psychological Science, 3, 105–111. doi: 10.1111/1467-8721.ep10770552
  • Peterson, M. A., & Salvagio, E. (2008). Inhibitory competition in figure-ground perception: Context and convexity. Journal of Vision, 8(16) :4, 1–13. doi: 10.1167/8.16.4
  • Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., … Vuilleumier, P. (2010). The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: A combined fMRI and ERP study. Journal of Cognitive Neuroscience, 22(12), 2768–2780. doi: 10.1162/jocn.2010.21424
  • Ploran, E. J., Nelson, S. M., Velanova, K., Donaldson, D., Petersen, S., & Wheeler, M. E. (2007). Evidence accumulation and the moment of recognition: Dissociating perceptual recognition processes using fMRI. Journal of Neuroscience, 27(44), 11912–11924. doi: 10.1523/JNEUROSCI.3522-07.2007
  • Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in lexical-decision task. Psychology and Aging, 19(2), 278–289. doi: 10.1037/0882-7974.19.2.278
  • Reddy, L., Moradi, F., & Koch, C. (2007). Top-down biases win against focal attention in the fusiform face area. Neuroimage, 38, 730–739. doi: 10.1016/j.neuroimage.2007.08.006
  • Rousselet, G. A., Joubert, O. R., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scene. Visual Cognition, 12(6), 852–877. doi: 10.1080/13506280444000553
  • Rousselet, G. A., Macé, M. J.-M., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human face? Fast processing in uptight and inverted natural scenes. Journal of Vision, 3, 440–455. doi: 10.1167/3.6.5
  • Schettino, A., Loeys, T., Bossi, M., & Pourtois, G. (2012). Valence-specific modulation in the accumulation of perceptual evidence prior to visual scene recognition. PLoS ONE, 7(5), 1–15. doi: 10.1371/journal.pone.0038064
  • Schettino, A., Loeys, T., Delphanque, S., & Pourtois, G. (2011). Brain dynamics of upstream perceptual processes leading to visual object recognition: A high density ERP topographic mapping study. NeuroImage, 55, 1227–1241. doi: 10.1016/j.neuroimage.2011.01.009
  • Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5(4), 195–200. doi: 10.1111/j.1467-9280.1994.tb00500.x
  • Shulman, G. L., Sullivan, M. A., Gish, K., & Sakoda, W. J. (1986). The role of spatial-frequency channels in the perception of local and global structure. Perception, 15(3), 259–273. doi: 10.1068/p150259
  • Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409. doi: 10.1016/j.tics.2009.06.003
  • Thurman, S. M., & Grossman, E. D. (2011). Diagnostic spatial frequencies and human efficiency for discriminating actions. Attention, Perception, and Psychophysics, 73, 572–580. doi: 10.3758/s13414-010-0028-z
  • Van den Broek, P., Lynch, J. S., Naslund, J., Ievers-Landis, C. E., & Verduin, K. (2003). The development of comprehension of main ideas in narratives: Evidence from the selection of titles. Journal of Educational Psychology, 95(4), 707–718. doi: 10.1037/0022-0663.95.4.707
  • Van Nes, F. L., & Bauman, M. A. (1967). Spatial modulation transfer in the human eye. Journal of the Optical Society of America, 57(3), 401–406. doi: 10.1364/JOSA.57.000401
  • VanRullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual categorization of natural and artifactual objects. Perception, 30, 655–668. doi: 10.1068/p3029
  • Vecera, S. P., Vogel, E. K., & Woodman, G. F. (2002). Lower region: A new cue for figure-ground assignment. Journal of Experimental Psychology: General, 131, 194–205. doi: 10.1037/0096-3445.131.2.194
  • Wolfe, M. B. W. (2005). Memory for narrative and expository text: Independent influences of semantic associations and text organization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 359–364. doi: 10.1037/0278-7393.31.2.359
  • Wong, E., & Weisstein, N. (1983). Sharp targets are detected better against a figure, and blurred targets are detected better against a background. Journal of Experimental Psychology: Human Perception and Performance, 9(2), 194–202. doi: 10.1037/0096-1523.9.2.194
  • Wurm, L. H., Legge, G. F., Isenberg, L. M., & Luebker, A. (1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology: Human Perception and Performance, 19, 899–911. doi: 10.1037/0096-1523.19.4.899
  • Zelinsky, G. J. (2013). Understanding scene understanding. Frontiers in Psychology, 4, 1–3. doi: 10.3389/fpsyg.2013.00954

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.