547
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

The concurrent encoding of viewpoint-invariant and viewpoint-dependent information in visual object recognition

ORCID Icon &
Pages 100-121 | Received 08 Nov 2016, Accepted 23 Apr 2017, Published online: 06 Jul 2017

References

  • Andresen, D. R., Vinberg, J., & Grill-Spector, K. (2009). The representation of object viewpoint in human visual cortex. Neuroimage, 45(2), 522–536. doi: 10.1016/j.neuroimage.2008.11.009
  • Bart, E., & Hegdé, J. (2012). Invariant recognition of visual objects: Some emerging computational principles. Frontiers in Computational Neuroscience, 6, 60.
  • Biederman, I. (1985). Human image understanding: Recent research and a theory. Computer Vision, Graphics, and Image Processing, 32, 29–73. doi: 10.1016/0734-189X(85)90002-7
  • Biederman, I. (2000). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13(2–3), 241–253. doi: 10.1163/156856800741063
  • Biederman, I., & Bar, M. (2000). Differing views on views: Response to Hayward and Tarr (2000). Vision Research, 40, 3901–3905. doi: 10.1016/S0042-6989(00)00180-2
  • Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1162–1182.
  • Biederman, I., & Gerhardstein, P. C. (1995). Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bülthoff (1995). Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1506–1514.
  • Cooper, E. E., & Wojan, T. J. (2000). Differences in the coding of spatial relations in face identification and basic-level object recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(2), 470–488.
  • Corballis, M. C., & McLaren, R. (1984). Winding one’s Ps and Qs: Mental rotation and mirror-image discrimination. Journal of Experimental Psychology: Human Perception and Performance, 10, 318–327.
  • Edelman, S., & Intrator, N. (2003). Towards structural systematicity in distributed, statically bound visual representations. Cognitive Science, 27, 73–109. doi: 10.1207/s15516709cog2701_3
  • Ellis, R., Allport, D. A., Humphreys, G. W., & Collis, J. (1989). Varieties of object constancy. The Quarterly Journal of Experimental Psychology Section A, 41(4), 775–796. doi: 10.1080/14640748908402393
  • Foster, D. H., & Gilson, S. J. (2002). Recognizing novel three-dimensional objects by summing signals from parts and views. Proceedings of the Royal Society B: Biological Sciences, 269, 1939–1947. doi: 10.1098/rspb.2002.2119
  • Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34(1), 161–171. doi: 10.1016/S0896-6273(02)00622-0
  • Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). The fusiform “face area” is part of a network that processes faces at the individual level. Journal of Cognitive Neuroscience, 12(3), 495–504. doi: 10.1162/089892900562165
  • Hamm, J. P., & McMullen, P. A. (1998). Effects of orientation on the identification of rotated objects depend on the level of identity. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 413–426.
  • Harvey, D. Y., & Burgund, E. D. (2012). Neural adaptation across viewpoint and exemplar in fusiform cortex. Brain and Cognition, 80(1), 33–44. doi: 10.1016/j.bandc.2012.04.009
  • Hayward, W. G., & Tarr, M. J. (2000). Differing views on views: Comments on Biederman and bar (1999). Vision Research, 40(28), 3895–3899. doi: 10.1016/S0042-6989(00)00179-6
  • Hayward, W. G., & Tarr, M. J. (2005). High-Level vision. In R. Goldstone & K. Lamberts (Eds.), Handbook of cognition (pp. 48–70). London: Sage Publications.
  • Hayward, W. G., Tarr, M. J., & Corderoy, A. K. (1999). Recognizing silhouettes and shaded images across depth rotation. Perception, 28, 1197–1215. doi: 10.1068/p2971
  • Hayward, W. G., & Williams, P. (2000). Viewpoint dependence and object discriminability. Psychological Science, 11(1), 7–12. doi: 10.1111/1467-9280.00207
  • Hummel, J. E. (2001). Complementary solutions to the binding problem in vision: Implications for shape perception and object recognition. Visual Cognition, 8(3–5), 489–517. doi: 10.1080/13506280143000214
  • Hummel, J. E., & Stankiewicz, B. J. (1996). Categorical relations in shape perception. Spatial Vision, 10, 201–236. doi: 10.1163/156856896X00141
  • Humphreys, G. W., & Riddoch, M. J. (1984). Routes to object constancy: Implications from neurological impairments of object constancy. Quarterly Journal of Experimental Psychology Section A – Human Experimental Psychology, 36, 385–415. doi: 10.1080/14640748408402169
  • Jolicoeur, P. (1985). The time to name disoriented natural objects. Memory & Cognition, 13, 289–303. doi: 10.3758/BF03202498
  • Jolicoeur, P. (1990). Identification of disoriented objects: A dual-systems theory. Mind & Language, 5(4), 387–410. doi: 10.1111/j.1468-0017.1990.tb00170.x
  • Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137–172. doi: 10.1037/0033-295X.92.2.137
  • Lawson, R., & Humphreys, G. W. (1996). View specificity in object processing: Evidence from picture matching. Journal of Experimental Psychology: Human Perception and Performance, 22(2), 395–416.
  • Lawson, R., & Humphreys, G. W. (1998). View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects. Perception & Psychophysics, 60(6), 1052–1066. doi: 10.3758/BF03211939
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi: 10.1038/nature14539
  • Leek, E. C., Atherton, C. J., & Thierry, G. (2007). Computational mechanisms of object constancy for visual recognition revealed by event-related potentials. Vision Research, 47(5), 706–713. doi: 10.1016/j.visres.2006.10.021
  • Leek, E. C., & Johnston, S. J. (2006). A polarity effect in misoriented object recognition: The role of polar features in the computation of orientation-invariant shape representations. Visual Cognition, 13(5), 573–600. doi: 10.1080/13506280544000048
  • Logothetis, N. K., Pauls, J., Bülthoff, H. H., & Poggio, T. (1994). View-dependent object recognition by monkeys. Current Biology, 4(5), 401–414. doi: 10.1016/S0960-9822(00)00089-0
  • Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London B, 200, 269–294. doi: 10.1098/rspb.1978.0020
  • Masson, M. E. J., Bub, D. N., & Breuer, A. T. (2011). “Priming of reach and grasp actions by handled objects”: Correction to Masson et al. (2011). Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1688–1688.
  • Milivojevic, B. (2012). Object recognition can be viewpoint dependent or invariant – it’s just a matter of time and task. Frontiers in Computational Neuroscience, 6, 27. doi: 10.3389/fncom.2012.00027
  • Navolio, N., Lemaitre, G., Forget, A., & Heller, L. M. (2016). The egocentric nature of action-sound associations. Frontiers in Psychology, 7(February), 1–10.
  • Perrett, D. I., Oram, M. W., & Ashbridge, E. (1998). Evidence accumulation in cell populations responsive to faces: An account of generalisation of recognition without mental transformations. Cognition, 67(1,2), 111–145. doi: 10.1016/S0010-0277(98)00015-8
  • Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-dimensional objects. Nature, 343, 263–266. doi: 10.1038/343263a0
  • Pyles, J. A., Verstynen, T. D., Schneider, W., & Tarr, M. J. (2013). Explicating the face perception network with White-matter connectivity. PLoS ONE, 8(4), e61611. doi: 10.1371/journal.pone.0061611
  • Ratan Murty, N. A., & Arun, S. P. (2015). Dynamics of 3D view invariance in monkey inferotemporal cortex. Journal of Neurophysiology, 113(7), 2180–2194. doi: 10.1152/jn.00810.2014
  • Rossion, B., Kung, C.-C., & Tarr, M. J. (2004). Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proceedings of the National Academy of Sciences USA, 101(40), 14521–14526. doi: 10.1073/pnas.0405613101
  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703. doi: 10.1126/science.171.3972.701
  • Stankiewicz, B. J., Hummel, J. E., & Cooper, E. E. (1998). The role of attention in priming for left–right reflections of object images: Evidence for a dual representation of object shape. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 732–744.
  • Takano, Y. (1989). Perception of rotated forms: A theory of information types. Cognitive Psychology, 21(1), 1–59. doi: 10.1016/0010-0285(89)90002-9
  • Tarr, M. J. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonomic Bulletin and Review, 2(1), 55–82. doi: 10.3758/BF03214412
  • Tarr, M. J., & Bülthoff, H. H. (1995). Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1494–1505.
  • Tarr, M. J., & Bülthoff, H. H. (1999). Object recognition in man, monkey, and machine (Vol. 67, p. 223). Cambridge, MA: The MIT Press.
  • Tarr, M. J., & Gauthier, I. (1998). Do viewpoint-dependent mechanisms generalize across members of a class? Cognition, 67(1–2), 71–108.
  • Tarr, M. J., Kersten, D., & Bülthoff, H. H. (1998). Why the visual recognition system might encode the effects of illumination. Vision Research, 38(15/16), 2259–2275. doi: 10.1016/S0042-6989(98)00041-8
  • Tarr, M. J., & Kriegman, D. J. (2001). What defines a view? Vision Research, 41(15), 1981–2004. doi: 10.1016/S0042-6989(01)00024-4
  • Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21(2), 233–282. doi: 10.1016/0010-0285(89)90009-1
  • Tarr, M. J., & Pinker, S. (1990). When does human object recognition use a viewer-centered reference frame? Psychological Science, 1(4), 253–256. doi: 10.1111/j.1467-9280.1990.tb00209.x
  • Tarr, M. J., Williams, P., Hayward, W. G., & Gauthier, I. (1998). Three-dimensional object recognition is viewpoint dependent. Nature Neuroscience, 1(4), 275–277. doi: 10.1038/1089
  • Tjan, B. S. (2001). Adaptive object representation with hierarchically-distributed memory sites. Advances in Neural Information Processing Systems, 13, 66–72.
  • Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences USA, 111(23), 8619–8624. doi: 10.1073/pnas.1403112111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.