1,344
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Phasic alerting increases visual attention capacity in younger but not in older individuals

ORCID Icon, , &
Pages 343-357 | Received 19 Dec 2016, Accepted 08 May 2017, Published online: 20 Jun 2017

References

  • American Electroencephalographic Society. (1994). Guideline thirteen: Guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 11, 111–113. doi: 10.1097/00004691-199401000-00014
  • Ásgeirsson, ÁG, Kristjánsson, Á, & Bundesen, C. (2015). Repetition priming in selective attention: A TVA analysis. Acta Psychologica, 160, 35–42. doi: 10.1016/j.actpsy.2015.06.008
  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. doi: 10.1146/annurev.neuro.28.061604.135709
  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. doi: 10.1162/neco.1995.7.6.1129
  • Berger, A., & Posner, M. I. (2000). Pathologies of brain attentional networks. Neuroscience & Biobehavioral Reviews, 24(1), 3–5. doi: 10.1016/S0149-7634(99)00046-9
  • Brown, S. B., Tona, K. D., van Noorden, M. S., Giltay, E. J., van der Wee, N. J., & Nieuwenhuis, S. (2015). Noradrenergic and cholinergic effects on speed and sensitivity measures of phasic alerting. Behavioral Neuroscience, 129(1), 42–49. doi: 10.1037/bne0000030
  • Brosnan, M., Demaria, G., Petersen, A., Dockree, P., Robertson, I. H., & Wiegand, I. (2017). Plasticiy of the right-lateralised cognitive reserve network in ageing. Cerebral Cortex, 1–11. doi: 10.1093/cercor/bhx085
  • Bublak, P., Redel, P., Sorg, C., Kurz, A., Förstl, H., Müller, H. J., … Finke, K. (2011). Staged decline of visual processing capacity in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 32(7), 1219–1230. doi: 10.1016/j.neurobiolaging.2009.07.012
  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547. doi: 10.1037/0033-295X.97.4.523
  • Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112, 291–328. doi: 10.1037/0033-295X.112.2.291
  • Bundesen, C., Vangkilde, S., & Habekost, T. (2015). Components of visual bias: A multiplicative hypothesis. Annals of the New York Academy of Sciences, 1339(1), 116–124. doi: 10.1111/nyas.12665
  • Chechlacz, M., Mantini, D., Gillebert, C. R., & Humphreys, G. W. (2015). Asymmetrical white matter networks for attending to global versus local features. Cortex, 72, 54–64. doi: 10.1016/j.cortex.2015.01.022
  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 215–229. doi: 10.1038/nrn755
  • Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–599. doi: 10.1146/annurev-neuro-061010-113731
  • Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18(18), 7426–7435.
  • Coull, J. T., Nobre, A. C., & Frith, C. D. (2001). The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cerebral Cortex, 11, 73–84. doi: 10.1093/cercor/11.1.73
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. doi: 10.1016/j.jneumeth.2003.10.009
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/annurev.ne.18.030195.001205
  • Dijk, D. J., Duffy, J. F., & Czeisler, C. A. (1992). Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. Journal of Sleep Research, 1(2), 112–117. doi: 10.1111/j.1365-2869.1992.tb00021.x
  • Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Chavda, S., & Shibuya, H. (1999). Systematic analysis of deficits in visual attention. Journal of Experimental Psychology: General, 128, 450–478. doi: 10.1037/0096-3445.128.4.450
  • Dyrholm, M., Kyllingsbæk, S., Espeseth, T., & Bundesen, C. (2011). Generalizing parametric models by introducing trial-by-trial parameter variability: The case of TVA. Journal of Mathematical Psychology, 55(6), 416–429. doi: 10.1016/j.jmp.2011.08.005
  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225–234. doi: 10.1016/0013-4694(96)95711-9
  • Espeseth, T., Vangkilde, S. A., Petersen, A., Dyrholm, M., & Westlye, L. T. (2014). TVA–based assessment of attentional capacities–associations with age and indices of brain white matter microstructure. Frontiers, 5, Article no. 1177. doi:10.3389/fpsyg.2014.01177
  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. Neuroimage, 26(2), 471–479. doi: 10.1016/j.neuroimage.2005.02.004
  • Fernandez-Duque, D., & Black, S. E. (2006). Attentional networks in normal aging and Alzheimer’s disease. Neuropsychology, 20(2), 133–143. doi: 10.1037/0894-4105.20.2.133
  • Fernandez-Duque, D., & Posner, M. I. (1997). Relating the mechanisms of orienting and alerting. Neuropsychologia, 35(4), 477–486. doi: 10.1016/S0028-3932(96)00103-0
  • Festa-Martino, E., Ott, B. R., & Heindel, W. C. (2004). Interactions between phasic alerting and spatial orienting: Effects of normal aging and Alzheimer’s disease. Neuropsychology, 18(2), 258–268. doi: 10.1037/0894-4105.18.2.258
  • Finke, K., Matthias, E., Keller, I., Müller, H. J., Schneider, W. X., & Bublak, P. (2012). How does phasic alerting improve performance in patients with unilateral neglect? A systematic analysis of attentional processing capacity and spatial weighting mechanisms. Neuropsychologia, 50(6), 1178–1189. doi: 10.1016/j.neuropsychologia.2012.02.008
  • Finke, K., Schwarzkopf, W., Müller, U., Frodl, T., Müller, H. J., Schneider, W. X., … Hennig-Fast, K. (2011). Disentangling the adult attention-deficit hyperactivity disorder endophenotype: Parametric measurement of attention. Journal of Abnormal Psychology, 120(4), 890–901. doi: 10.1037/a0024944
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-Mental state (a practical method for grading the state of patients for the clinician). Journal of Psychiatric Research, 12, 189–198. doi: 10.1016/0022-3956(75)90026-6
  • Gabay, S., Pertzov, Y., & Henik, A. (2011). Orienting of attention, pupil size, and the norepinephrine system. Attention, Perception, & Psychophysics, 73(1), 123–129. doi: 10.3758/s13414-010-0015-4
  • Gamboz, N., Zamarian, S., & Cavallero, C. (2010). Age-related differences in the attention network test (ANT). Experimental Aging Research, 36(3), 287–305. doi: 10.1080/0361073X.2010.484729
  • Gibson, S. J. (1997). The measurement of mood states in older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 52B(4), P167–P174. doi: 10.1093/geronb/52B.4.P167
  • Gillebert, C. R., Dyrholm, M., Vangkilde, S., Kyllingsbæk, S., Peeters, R., & Vandenberghe, R. (2012). Attentional priorities and access to short-term memory: Parietal interactions. Neuroimage, 62(3), 1551–1562. doi: 10.1016/j.neuroimage.2012.05.038
  • Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252–269. doi: 10.3758/CABN.10.2.252
  • Habekost, T., Vangkilde, S., & Petersen, A. (2014). Assessment of attention: ANT and TVA provide complementary measures. Behavior Research Methods, 46, 81–94. doi: 10.3758/s13428-013-0341-2
  • Habekost, T., Vogel, A., Rostrup, E., Bundesen, C., Kyllingsbaek, S., Garde, E., … Waldemar, G. (2013). Visual processing speed in old age. Scandinavian Journal of Psychology, 54(2), 89–94. doi: 10.1111/sjop.12008
  • Hackley, S. A., & Valle-Inclán, F. (2003). Which stages of processing are speeded by a warning signal? Biological Psychology, 64(1), 27–45. doi: 10.1016/S0301-0511(03)00101-7
  • Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalography and Clinical Neurophysiology, 75(6), 511–527. doi: 10.1016/0013-4694(90)90138-A
  • Hoffman, L., McDowd, J. M., Atchley, P., & Dubinsky, R. (2005). The role of visual attention in predicting driving impairment in older adults. Psychology and Aging, 20(4), 610–622. doi: 10.1037/0882-7974.20.4.610
  • Ishigami, Y., Eskes, G. A., Tyndall, A. V., Longman, R. S., Drogos, L. L., & Poulin, M. J. (2016). The attention network test-interaction (ANT-I): reliability and validity in healthy older adults. Experimental Brain Research, 234(3), 815–827. doi: 10.1007/s00221-015-4493-4
  • Jennings, J. M., Dagenbach, D., Engle, C. M., & Funke, L. J. (2007). Age-related changes and the attention network task: An examination of alerting, orienting, and executive function. Aging, Neuropsychology, and Cognition, 14(4), 353–369. doi: 10.1080/13825580600788837
  • Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587–1596. doi: 10.1162/jocn.2010.21548
  • Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(02), 163–178. doi: 10.1111/1469-8986.3720163
  • Kusnir, F., Chica, A. B., Mitsumasu, M. A., & Bartolomeo, P. (2011). Phasic auditory alerting improves visual conscious perception. Consciousness and Cognition, 788, 1201–1210. doi: 10.1016/j.concog.2011.01.012
  • Kyllingsbæk, S. (2006). Modeling visual attention. Behavior Research Methods, 38(1), 123–133. doi: 10.3758/BF03192757
  • Lindenberger, U., & Mayr, U. (2014). Cognitive aging: Is there a dark side to environmental support? Trends in Cognitive Sciences, 18(1), 7–15. doi: 10.1016/j.tics.2013.10.006
  • Lohr, J. B., & Jeste, D. V. (1988). Locus ceruleus morphometry in aging and schizophrenia. Acta Psychiatrica Scandinavica, 77(6), 689–697. doi: 10.1111/j.1600-0447.1988.tb05189.x
  • Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers, 8, Article no. 734. doi:10.3389/fnhum.2014.00213
  • Lorenzo-López, L., Amenedo, E., & Cadaveira, F. (2008). Feature processing during visual search in normal aging: Electrophysiological evidence. Neurobiology of Aging, 29(7), 1101–1110. doi: 10.1016/j.neurobiolaging.2007.02.007
  • Los, S. A., & Van der Burg, E. (2013). Sound speeds vision through preparation, not integration. Journal of Experimental Psychology: Human Perception and Performance, 39, 1612–1624.
  • Los, S. A., Kruijne, W., & Meeter, M. (2017). Hazard versus history: Temporal preparation is driven by past experience. Journal of Experimental Psychology: Human Perception and Performance, 43, 78–88.
  • Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.
  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000–1014.
  • Luck, S. J., Heinze, H. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalography and Clinical Neurophysiology, 75(6), 528–542. doi: 10.1016/0013-4694(90)90139-B
  • Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4(11), 432–440. doi: 10.1016/S1364-6613(00)01545-X
  • Madden, D. J., Spaniol, J., Whiting, W. L., Bucur, B., Provenzale, J. M., Cabeza, R., … Huettel, S. A. (2007). Adult age differences in the functional neuroanatomy of visual attention: A combined fMRI and DTI study. Neurobiology of Aging, 28(3), 459–476. doi: 10.1016/j.neurobiolaging.2006.01.005
  • Manaye, K. F., McIntire, D. D., Mann, D., & German, D. C. (1995). Locus coeruleus cell loss in the aging human brain: A non-random process. Journal of Comparative Neurology, 358(1), 79–87. doi: 10.1002/cne.903580105
  • Mangun, G. R., & Hillyard, S. A. (1990). Electrophysiological studies of visual selective attention in humans. In Arnold B. Scheibel, & A.F. Wechsler (Eds.), Neurobiology of higher cognitive function. UCLA forum in medical sciences (pp. 271–295). xiv, 370, New York, NY: Guilford Press.
  • Mather, M., & Harley, C. W. (2016). The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends in Cognitive Sciences, 20(3), 214–226. doi: 10.1016/j.tics.2016.01.001
  • Matthias, E., Bublak, P., Müller, H. J., Schneider, W. X., Krummenacher, J., & Finke, K. (2010). The influence of alertness on spatial and nonspatial components of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 38–56.
  • McAvinue, L. P., Habekost, T., Johnson, K. A., Kyllingsbæk, S., Vangkilde, S., Bundesen, C., & Robertson, I. H. (2012). Sustained attention, attentional selectivity, and attentional capacity across the lifespan. Attention, Perception, & Psychophysics, 74(8), 1570–1582. doi: 10.3758/s13414-012-0352-6
  • McDowd, J. M., & Shaw, R. J. (2000). Attention and aging: A functional perspective. In F. I. M. Craik, & T.A. Salthouse (Eds.), The handbook of aging and cognition (2nd ed., pp. 221–292). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Murphy, P. R., O'Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140–4154. doi: 10.1002/hbm.22466
  • Nebes, R. D., & Brady, C. B. (1993). Phasic and tonic alertness in Alzheimer’s disease. Cortex, 29(1), 77–90. doi: 10.1016/S0010-9452(13)80213-4
  • Nelson, H. E., & Willison, J. (1991). National adult reading test (NART). Windsor: NFER-Nelson.
  • Nickerson, R. S. (1973). Intersensory facilitation of reaction time: Energy summation or preparation enhancement? Psychological Review, 80(6), 489–509. doi: 10.1037/h0035437
  • Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89(1), 133–162. doi: 10.1037/0033-2909.89.1.133
  • Oberlin, B. G., Alford, J. L., & Marrocco, R. T. (2005). Normal attention orienting but abnormal stimulus alerting and conflict effect in combined subtype of ADHD. Behavioural Brain Research, 165(1), 1–11. doi: 10.1016/j.bbr.2005.06.041
  • Owsley, C., & McGwin, G. (2004). Association between visual attention and mobility in older adults. Journal of the American Geriatrics Society, 52(11), 1901–1906. doi: 10.1111/j.1532-5415.2004.52516.x
  • Parasuraman, R., Warm, J. S., & See, J. E. (1998). Brain systems of vigilance. In Judi E. Parasuraman Raja (Eds.), The attentive brain (pp. 221–256). xii, 577, Cambridge, MA: The MIT Press.
  • Paus, T., Zatorre, R. J., Hofle, N., Caramanos, Z., Gotman, J., Petrides, M., & Evans, A. C. (1997). Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience, 9(3), 392–408. doi: 10.1162/jocn.1997.9.3.392
  • Périn, B., Godefroy, O., Fall, S., & De Marco, G. (2010). Alertness in young healthy subjects: An fMRI study of brain region interactivity enhanced by a warning signal. Brain and Cognition, 72(2), 271–281. doi: 10.1016/j.bandc.2009.09.010
  • Petersen, A., Kyllingsbæk, S., & Bundesen, C. (2012). Measuring and modeling attentional dwell time. Psychonomic Bulletin & Review, 19(6), 1029–1046. doi: 10.3758/s13423-012-0286-y
  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi: 10.1146/annurev-neuro-062111-150525
  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25. doi: 10.1080/00335558008248231
  • Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408. doi: 10.1037/h0031333
  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. doi: 10.1146/annurev.ne.13.030190.000325
  • Rabbitt, P. (1984). How old-people prepare themselves for events which they expect. Attention and Performance, 10, 515–527.
  • Redel, P., Bublak, P., Sorg, C., Kurz, A., Förstl, H., Müller, H. J., … Finke, K. (2012). Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 33(1), 195.e27–195.e42. doi: 10.1016/j.neurobiolaging.2010.05.014
  • Robertson, I. H. (2013). A noradrenergic theory of cognitive reserve: Implications for Alzheimer’s disease. Neurobiology of Aging, 34(1), 298–308. doi: 10.1016/j.neurobiolaging.2012.05.019
  • Robertson, I. H. (2014). A right hemisphere role in cognitive reserve. Neurobiology of Aging, 35(6), 1375–1385. doi: 10.1016/j.neurobiolaging.2013.11.028
  • Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). Oops!': Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758. doi: 10.1016/S0028-3932(97)00015-8
  • Robertson, I. H., Mattingley, J. B., Rorden, C., & Driver, J. (1998). Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature, 395(6698), 169–172. doi: 10.1038/25993
  • Rolke, B., & Hofmann, P. (2007). Temporal uncertainty degrades perceptual processing. Psychonomic Bulletin & Review, 14, 522–526. doi: 10.3758/BF03194101
  • Schwarz, R., Krauss, O., & Hinz, A. (2003). Fatigue in the general population. Oncology Research and Treatment, 26(2), 140–144. doi: 10.1159/000069834
  • Shalev, N., Humphreys, G., & Demeyere, N. (2016). Assessing the temporal aspects of attention and its correlates in aging and chronic stroke patients. Neuropsychologia, 92, 59–68. doi: 10.1016/j.neuropsychologia.2016.08.001
  • Smets, E. M. A., Garssen, B., Bonke, B. D., & De Haes, J. C. J. M. (1995). The multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. Journal of Psychosomatic Research, 39(3), 315–325. doi: 10.1016/0022-3999(94)00125-O
  • Statistical Yearbook. (2016). U. Agerskov, M.P. Bisgaar, P.D. Poulin. Copenhagen, Denmark: Statistics Denmark.
  • Stenneken, P., Egetemeir, J., Schulte-Körne, G., Müller, H. J., Schneider, W. X., & Finke, K. (2011). Slow perceptual processing at the core of developmental dyslexia: A parameter-based assessment of visual attention. Neuropsychologia, 49(12), 3454–3465. doi: 10.1016/j.neuropsychologia.2011.08.021
  • Sturm, W., De Simone, A., Krause, B. J., Specht, K., Hesselmann, V., Radermacher, I., … Willmes, K. (1999). Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia, 37(7), 797–805. doi: 10.1016/S0028-3932(98)00141-9
  • Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14, S76–S84. doi: 10.1006/nimg.2001.0839
  • Taatgen, N., & Van Rijn, H. (2011). Traces of times past: Representations of temporal intervals in memory. Memory & Cognition, 39, 1546–1560. doi: 10.3758/s13421-011-0113-0
  • Thiel, C. M., & Fink, G. R. (2007). Visual and auditory alertness: Modality-specific and supramodal neural mechanisms and their modulation by nicotine. Journal of Neurophysiology, 97, 2758–2768. doi: 10.1152/jn.00017.2007
  • Töllner, T., Rangelov, D., & Müller, H. J. (2012). How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences, 109(28), E1990–E1999. doi: 10.1073/pnas.1206382109
  • Vangkilde, S., Coull, J. T., & Bundesen, C. (2012). Great expectations: Temporal expectation modulates perceptual processing speed. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1183–1191.
  • Vijayashankar, N., & Brody, H. (1979). A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. Journal of Neuropathology & Experimental Neurology, 38(5), 490–497. doi: 10.1097/00005072-197909000-00004
  • Weinbach, N., & Henik, A. (2012). Temporal orienting and alerting–the same or different? Frontiers, 3, Article no. 236. doi:10.3389/fpsyg.2012.00236
  • Wiegand, I., Finke, K., Müller, H. J., & Töllner, T. (2013). Event-related potentials dissociate perceptual from response-related age effects in visual search. Neurobiology of Aging, 34(3), 973–985. doi: 10.1016/j.neurobiolaging.2012.08.002
  • Wiegand, I., Finke, K., Töllner, T., Starman, K., Müller, H. J., & Conci, M. (2015). Age-related decline in global form suppression. Biological Psychology, 112, 116–124. doi: 10.1016/j.biopsycho.2015.10.006
  • Wiegand, I., Hennig-Fast, K., Kilian, B., Müller, H. J., Töllner, T., Möller, H. J., … Finke, K. (2016). EEG correlates of visual short-term memory as neuro-cognitive endophenotypes of ADHD. Neuropsychologia, 85, 91–99. doi: 10.1016/j.neuropsychologia.2016.03.011
  • Wiegand, I., Petersen, A., Lansner, J., Finke, K., Bundesen, C., & Habekost, T. (2017). Behavioral and brain measures of phasic alerting effects on visual attention. Frontiers, 11, Article no. 176. doi:10.3389/fnhum.2017.00176
  • Wiegand, I., Töllner, T., Dyrholm, M., Müller, H. J., Bundesen, C., & Finke, K. (2014). Neural correlates of age-related decline and compensation in visual attention capacity. Neurobiology of Aging, 35(9), 2161–2173. doi: 10.1016/j.neurobiolaging.2014.02.023
  • Wiegand, I., Töllner, T., Habekost, T., Dyrholm, M., Müller, H. J., & Finke, K. (2014). Distinct neural markers of TVA-based visual processing speed and short-term storage capacity parameters. Cerebral Cortex, 24, 1967–1978. doi: 10.1093/cercor/bht071
  • Williams, R. S., Biel, A. L., Wegier, P., Lapp, L. K., Dyson, B. J., & Spaniol, J. (2016). Age differences in the attention network test: Evidence from behavior and event-related potentials. Brain and Cognition, 102, 65–79. doi: 10.1016/j.bandc.2015.12.007
  • Witte, E. A., & Marrocco, R. T. (1997). Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology, 132(4), 315–323. doi: 10.1007/s002130050351
  • Wolfe, J. M. (2014). Approaches to visual search: Feature integration theory and guided search. In A.C. Nobre, & S. Kastner (Eds.), The Oxford handbook of attention (pp. 11–55). Oxford: Oxford University Press.
  • Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400(6747), 867–869. doi: 10.1038/23698
  • Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482. doi: 10.1002/cne.920180503
  • Zanto, T. P., Pan, P., Liu, H., Bollinger, J., Nobre, A. C., & Gazzaley, A. (2011). Age-related changes in orienting attention in time. Journal of Neuroscience, 31(35), 12461–12470. doi: 10.1523/JNEUROSCI.1149-11.2011
  • Zhou, S. S., Fan, J., Lee, T. M., Wang, C. Q., & Wang, K. (2011). Age-related differences in attentional networks of alerting and executive control in young, middle-aged, and older Chinese adults. Brain and Cognition, 75(2), 205–210. doi: 10.1016/j.bandc.2010.12.003