260
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Attentional capture: Role of top-down focused spatial attention and the need to search among multiple locations

, & ORCID Icon
Pages 326-342 | Received 27 Oct 2016, Accepted 12 May 2017, Published online: 21 Jun 2017

References

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496. doi: 10.3758/BF03205306
  • Belopolsky, A. V., & Theeuwes, J. (2010). No capture outside the attentional window. Vision Research, 50(23), 2543–2550. doi: 10.1016/j.visres.2010.08.023
  • Belopolsky, A., Zwaan, L., Theeuwes, J., & Kramer, A. (2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14(5), 934–938. doi: 10.3758/BF03194124
  • Bertleff, S., Fink, G. R., & Weidner, R. (2016). The role of top–down focused spatial attention in preattentive salience coding and salience-based attentional capture. Journal of Cognitive Neuroscience, 28(8), 1152–1165. doi: 10.1162/jocn_a_00964
  • Brignani, D., Lepsien, J., & Nobre, A. C. (2010). Purely endogenous capture of attention by task-defining features proceeds independently from spatial attention. NeuroImage, 51(2), 859–866. doi: 10.1016/j.neuroimage.2010.03.029
  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. doi: 10.1037/0033-295X.97.4.523
  • Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychologica, 73(3), 195–209. doi: 10.1016/0001-6918(90)90022-8
  • Castiello, U., & Umiltà, C. (1992). Splitting focal attention. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 837–848. doi: 10.1037/0096-1523.18.3.837
  • Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 1245–1255. doi: 10.1098/rstb.1998.0280
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/annurev.ne.18.030195.001205
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 1030–1044. doi: 10.1037/0096-1523.18.4.1030
  • Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Perception & Psychophysics, 58(1), 88–101. doi: 10.3758/BF03205479
  • Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999–1010. doi: 10.3758/BF03194829
  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740–1750. doi: 10.1177/0956797615597913
  • Gaspelin, N., Ruthruff, E., & Lien, M.-C. (2016). The problem of latent attentional capture: Easy visual search conceals capture by task-irrelevant abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1104–1120. doi: 10.1037/xhp0000214
  • Gaspelin, N., Ruthruff, E., Lien, M.-C., & Jung, K. (2012). Breaking through the attentional window: Capture by abrupt onsets versus color singletons. Attention, Perception, & Psychophysics, 74(7), 1461–1474. doi: 10.3758/s13414-012-0343-7
  • Greenwood, P. M., & Parasuraman, R. (1999). Scale of attentional focus in visual search. Perception & Psychophysics, 61(5), 837–859. doi: 10.3758/BF03206901
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760–775. doi: 10.1162/jocn.2009.21039
  • Hickey, C., McDonald, J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18(4), 604–613. doi: 10.1162/jocn.2006.18.4.604
  • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259. doi: 10.1109/34.730558
  • Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a “preattentive” feature search task. Nature, 387(6635), 805–807. doi: 10.1038/42940
  • Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24(3), 749–759. doi: 10.1162/jocn_a_00127
  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.
  • Lamy, D., Leber, A. B., & Egeth, H. E. (2012). Selective attention. In A. F. Healy & R. W. Proctor (Eds.), Experimental psychology. Volume 4 in I.B. Weiner (Editor-in-Chief), Handbook of psychology (pp. 265–294). New York: Wiley.
  • Lamy, D., & Zoaris, L. (2009). Task-irrelevant stimulus salience affects visual search. Vision Research, 49(11), 1472–1480. doi: 10.1016/j.visres.2009.03.007
  • Leber, A. B., & Egeth, H. E. (2006). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13(1), 132–138. doi: 10.3758/BF03193824
  • Mack, A., & Rock, I. (1998). Inattentional blindness (Bd. xiv). Cambridge, MA: The MIT Press.
  • Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 1–16. doi: 10.1037/0096-1523.35.1.1
  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57(1), 1–17. doi: 10.3758/BF03211845
  • Munneke, J., Van der Stigchel, S., & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129(1), 101–107. doi: 10.1016/j.actpsy.2008.05.004
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi: 10.1016/0028-3932(71)90067-4
  • Olivers, C. N. L., & Humphreys, G. W. (2003a). Attentional guidance by salient feature singletons depends on intertrial contingencies. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 650–657. doi: 10.1037/0096-1523.29.3.650
  • Olivers, C. N. L., & Humphreys, G. W. (2003b). Visual marking inhibits singleton capture. Cognitive Psychology, 47(1), 1–42. doi: 10.1016/S0010-0285(03)00003-3
  • Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725–10736. doi: 10.1523/JNEUROSCI.1864-12.2012
  • Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470. doi: 10.3758/APP.72.6.1455
  • Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956–972. doi: 10.1080/13506285.2011.603709
  • Seiss, E., Kiss, M., & Eimer, M. (2009). Does focused endogenous attention prevent attentional capture in pop-out visual search? Psychophysiology, 46(4), 703–717. doi: 10.1111/j.1469-8986.2009.00827.x
  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261. doi: 10.1037/0096-1523.31.2.248
  • Soto, D., & Humphreys, G. W. (2009). Automatic selection of irrelevant object features through working memory: Evidence for top-down attentional capture. Experimental Psychology, 56(3), 165–172. doi: 10.1027/1618-3169.56.3.165
  • Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46(6–7), 1010–1018. doi: 10.1016/j.visres.2005.09.008
  • Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184–193. doi: 10.3758/BF03212219
  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606. doi: 10.3758/BF03211656
  • Theeuwes, J. (1994). Endogenous and exogenous control of visual selection. Perception, 23(4), 429–440. doi: 10.1068/p230429
  • Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65–70. doi: 10.3758/BF03206462
  • Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. doi: 10.1016/j.actpsy.2010.02.006
  • Töllner, T., Müller, H. J., & Zehetleitner, M. (2012). Top-down dimensional weight set determines the capture of visual attention: Evidence from the PCN component. Cerebral Cortex, 22(7), 1554–1563. doi: 10.1093/cercor/bhr231
  • Van der Stigchel, S., & Theeuwes, J. (2006). Our eyes deviate away from a location where a distractor is expected to appear. Experimental Brain Research, 169(3), 338–349. doi: 10.1007/s00221-005-0147-2
  • Velhagen, K., & Broschmann, D. (2003). Tafeln zur Prüfung des Farbensinns. Stuttgart: Thieme.
  • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90–122. doi: 10.1037/0033-295X.104.1.90
  • Watson, D. G., & Humphreys, G. W. (1998). Visual marking of moving objects: A role for top-down feature-based inhibition in selection. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 946–962. doi: 10.1037/0096-1523.24.3.946
  • Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Perception & Psychophysics, 62(3), 471–481. doi: 10.3758/BF03212099
  • Weidner, R., Krummenacher, J., Reimann, B., Müller, H. J., & Fink, G. R. (2009). Sources of top-down control in visual search. Journal of Cognitive Neuroscience, 21(11), 2100–2113. doi: 10.1162/jocn.2008.21173
  • Weidner, R., & Müller, H. J. (2009). Dimensional weighting of primary and secondary target-defining dimensions in visual search for singleton conjunction targets. Psychological Research, 73(2), 198–211. doi: 10.1007/s00426-008-0208-9
  • Weidner, R., & Müller, H. J. (2013). Dimensional weighting in cross-dimensional singleton conjunction search. Journal of Vision, 13(3), 25–25. doi: 10.1167/13.3.25
  • Weidner, R., Pollmann, S., Müller, H. J., & von Cramon, D. Y. (2002). Top-down controlled visual dimension weighting: An event-related fMRI study. Cerebral Cortex, 12(3), 318–328. doi: 10.1093/cercor/12.3.318
  • Wolfe, J. M. (1994). Guided search 2.0 A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. doi: 10.3758/BF03200774
  • Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121–134. doi: 10.1037/0096-1523.16.1.121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.