376
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Discrete item-based and continuous configural representations in visual short-term memory

ORCID Icon &
Pages 21-33 | Received 19 Dec 2016, Accepted 29 May 2017, Published online: 23 Jun 2017

References

  • Ackerman, C. M., & Courtney, S. M. (2012). Spatial relations and spatial locations are dissociated within prefrontal and parietal cortex. Journal of Neurophysiology, 108(9), 2419–2429. doi: 10.1152/jn.01024.2011
  • Alvarez, G. A., & Cavanagh, P. (2008). Visual short-term memory operates more efficiently on boundary features than on surface features. Perception and Psychophysics, 70(2), 346–364. doi: 10.3758/PP.70.2.346
  • Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19(4), 392–398. doi: 10.1111/j.1467-9280.2008.02098.x
  • Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7345–7350. doi: 10.1073/pnas.0808981106
  • Aly, M., & Yonelinas, A. P. (2012). Bridging consciousness and cognition in memory and perception: Evidence for both state and strength processes. PLoS ONE, 7(1), e30231. doi: 10.1371/journal.pone.0030231
  • Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40(1), 309–328. doi: 10.1002/j.1538-7305.1961.tb03987.x
  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628. doi: 10.1111/j.1467-9280.2007.01949.x
  • Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280–289. doi: 10.1016/j.tics.2007.05.005
  • Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553–573. doi: 10.1037/0033-2909.130.4.553
  • Barton, B., Ester, E. F., & Awh, E. (2009). Discrete resource allocation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1359–1367.
  • Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854. doi: 10.1126/science.1158023
  • Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384–392. doi: 10.1177/0956797610397956
  • Brady, T. F., & Alvarez, G. A. (2015). Contextual effects in visual working memory reveal hierarchically structured memory representations. Journal of Vision, 15(15), 6–24. doi: 10.1167/15.15.6
  • Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 4. doi: 10.1167/11.5.4
  • Brady, T., & Tenenbaum, J. (2013). A probabilistic model of visual working memory: Incorporating higher order regularities into working memory capacity estimates. Psychological Review, 120(1), 85–109. doi: 10.1037/a0030779
  • Brainerd, C. J., & Reyna, V. F. (1998). Fuzzy-trace theory and children's false memories. Journal of Experimental Child Psychology, 71(2), 81–129. doi: 10.1006/jecp.1998.2464
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. doi: 10.1163/156856897X00357
  • Choo, H., Levinthal, B. R., & Franconeri, S. L. (2012). Average orientation is more accessible through object boundaries than surface features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 585–588. doi: 10.1037/a0026284
  • Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: How the models match the data. Psychonomic Bulletin and Review, 3(1), 37–60. doi: 10.3758/BF03210740
  • Corbett, J. E. (2016). The whole warps the sum of its parts: Gestalt-defined-group mean size biases memory for individual objects. Psychological Science, 28(1), 12–22. doi: 10.1177/0956797616671524
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. discussion 114–85. doi: 10.1017/S0140525X01003922
  • Delvenne, J. F., Braithwaite, J. J., Riddoch, M. J., & Humphreys, G. W. (2002). Capacity limits in visual short-term memory for local orientations. Current Psychology of Cognition, 21(6), 681–690.
  • Donkin, C., Nosofsky, R. M., Gold, J. M., & Shiffrin, R. M. (2013). Discrete-slots models of visual working-memory response times. Psychological Review, 120(4), 873–902. doi: 10.1037/a0034247
  • Donkin, C., Tran, S. C., & Nosofsky, R. (2014). Landscaping analyses of the ROC predictions of discrete-slots and signal-detection models of visual working memory. Attention, Perception, & Psychophysics, 76(7), 2103–2116. doi: 10.3758/s13414-013-0561-7
  • Driver, J., & Baylis, G. C. (1996). Edge-assignment and figure–ground segmentation in short-term visual matching. Cognitive Psychology, 31(3), 248–306. doi: 10.1006/cogp.1996.0018
  • Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin and Review, 17(5), 673–679. doi: 10.3758/17.5.673
  • Gmeindl, L., Nelson, J. K., Wiggin, T., & Reuter-Lorenz, P. A. (2011). Configural representations in spatial working memory: Modulation by perceptual segregation and voluntary attention. Attention, Perception, & Psychophysics, 73(7), 2130–2142. doi: 10.3758/s13414-011-0180-0
  • Hintzman, D. L. (2001). Similarity, global matching, and judgments of frequency. Memory & Cognition, 29(4), 547–556. doi: 10.3758/BF03200456
  • Howe, E., & Jung, K. (1986). Immediate memory span for two-dimensional spatial arrays: Effects of pattern symmetry and goodness. Acta Psychologica, 61(1), 37–51. doi: 10.1016/0001-6918(86)90020-X
  • Hunt, R. R., & Einstein, G. O. (1981). Relational and item-specific information in memory. Journal of Verbal Learning and Verbal Behavior, 20(5), 497–514. doi: 10.1016/S0022-5371(81)90138-9
  • Ikkai, A., Blacker, K. J., Lakshmanan, B. M., Ewen, J. B., & Courtney, S. M. (2014). Maintenance of relational information in working memory leads to suppression of the sensory cortex. Journal of Neurophysiology, 112(8), 1903–1915. doi: 10.1152/jn.00134.2014
  • Jaswal, S., & Logie, R. H. (2011). Configural encoding in visual feature binding. Journal of Cognitive Psychology, 23(5), 586–603. doi: 10.1080/20445911.2011.570256
  • Jiang, Y., Chun, M. M., & Olson, I. R. (2004). Perceptual grouping in change detection. Perception and Psychophysics, 66(3), 446–453. doi: 10.3758/BF03194892
  • Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 683–702.
  • Kimchi, R. (1994). The role of wholistic/configural properties versus global properties in visual form perception. Perception, 23(5), 489–504. doi: 10.1068/p230489
  • Kubilius, J., Wagemans, J., & de Beeck, H. P. O. (2014). Encoding of configural regularity in the human visual system. Journal of Vision, 14(9), 11. doi: 10.1167/14.9.11
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. doi: 10.1038/36846
  • Macmillan, N. A., & Creelman, C. D. (2005). Detection theory (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Maurer, D., Grand, R. L., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255–260. doi: 10.1016/S1364-6613(02)01903-4
  • Mazza, V., Turatto, M., & Umiltà, C. (2005). Foreground-background segmentation and attention: A change blindness study. Psychological Research, 69(3), 201–210. doi: 10.1007/s00426-004-0174-9
  • Melchers, K. G., Shanks, D. R., & Lachnit, H. (2008). Stimulus coding in human associative learning: Flexible representations of parts and wholes. Behavioural Processes, 77(3), 413–427. discussion 451–3. doi: 10.1016/j.beproc.2007.09.013
  • Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. doi: 10.1037/h0043158
  • Miller, J. R., Becker, M. W., & Liu, T. (2014). The bandwidth of consolidation into visual short-term memory depends on the visual feature. Visual Cognition, 22(7), 920–947. doi: 10.1080/13506285.2014.936923
  • Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64. doi: 10.20982/tqmp.04.2.p061
  • Nie, Q.-Y., Müller, H. J., & Conci, M. (2017). Hierarchical organization in visual working memory: From global ensemble to individual object structure. Cognition, 159, 85–96. doi: 10.1016/j.cognition.2016.11.009
  • Oberauer, K. (2008). How to say no: Single- and dual-process theories of short-term recognition tested on negative probes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 439–459. doi: 10.1037/0278-7393.34.3.439
  • Orhan, A., Jacobs, R., & Jacobs, R. (2013). A probabilistic clustering theory of the organization of visual short-term memory. Psychological Review, 120(2), 297–328. doi: 10.1037/a0031541
  • Parks, C. M., & Yonelinas, A. P. (2007). Moving beyond pure signal-detection models: Comment on Wixted (2007). Psychological Review, 114(1), 188–201. discussion 203–9. doi: 10.1037/0033-295X.114.1.188
  • Peterson, D. J., & Berryhill, M. E. (2013). The Gestalt principle of similarity benefits visual working memory. Psychonomic Bulletin and Review, 20, 1282–1289. doi: 10.3758/s13423-013-0460-x
  • Piepers, D., & Robbins, R. (2012). A review and clarification of the terms “holistic,” “configural,” and “relational” in the face perception literature. Frontiers in Psychology, 3, 559. doi: 10.3389/fpsyg.2012.00559
  • Pomerantz, J. R., & Garner, W. (1973). Stimules configuration in selective attention tasks. Perception & Psychophysics, 14(3), 565–569. doi: 10.3758/BF03211198
  • Pomerantz, J. R., Sager, L. C., & Stoever, R. J. (1977). Perception of wholes and of their component parts: Some configural superiority effects. Journal of Experimental Psychology: Human Perception and Performance, 3(3), 422–435.
  • Ricker, T. J., Thiele, J. E., Swagman, A. R., & Rouder, J. N. (2016). Recognition decisions from visual working memory are mediated by continuous latent strengths. Cognitive Science. doi: 10.1111/cogs.12436
  • Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 5975–5979. doi: 10.1073/pnas.0711295105
  • Sharot, T., Davidson, M. L., Carson, M. M., & Phelps, E. A. (2008). Eye movements predict recollective experience. PLoS ONE, 3(8), e2884. doi: 10.1371/journal.pone.0002884
  • Simons, D. J. (1996). In sight, out of mind: When object representations fail. Psychological Science, 7(5), 301–305. doi:10.2307/40062966?ref=search-gateway:689732be4ecfe01adf96911bfbf87706 doi: 10.1111/j.1467-9280.1996.tb00378.x
  • Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400(6747), 869–873. doi: 10.1038/23703
  • Thiele, J. E., Pratte, M. S., & Rouder, J. N. (2011). On perfect working-memory performance with large numbers of items. Psychonomic Bulletin and Review, 18(5), 958–963. doi: 10.3758/s13423-011-0108-7
  • Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology: Human Perception and Performance, 10(1), 12–31.
  • Treisman, A., & Zhang, W. (2006). Location and binding in visual working memory. Memory & Cognition, 34(8), 1704–1719. doi: 10.3758/BF03195932
  • van den Berg, R., Shin, H., Chou, W.-C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109(22), 8780–8785. doi: 10.1073/pnas.1117465109
  • Vidal, J. R., Gauchou, H. L., Tallon-Baudry, C., & O'Regan, J. K. (2005). Relational information in visual short-term memory: The structural gist. Journal of Vision, 5(3), 244–256. doi: 10.1167/5.3.8
  • Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120–1135. doi: 10.1167/4.12.11
  • Wong, E., & Weisstein, N. (1982). A new perceptual context-superiority effect: Line segments are more visible against a figure than against a ground. Science, 218(4572), 587–589. doi: 10.1126/science.7123261
  • Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin and Review, 10(1), 80–87. doi: 10.3758/BF03196470
  • Xie, W., & Zhang, W. (2017). Familiarity increases the number of remembered Pokémon in visual short-term memory. Memory & Cognition, 45(4), 677–689. doi: 10.3758/s13421-016-0679-7
  • Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441–517. doi: 10.1006/jmla.2002.2864
  • Yonelinas, A. P., & Parks, C. M. (2007). Receiver operating characteristics (ROCs) in recognition memory: A review. Psychological Bulletin, 133(5), 800–832. doi: 10.1037/0033-2909.133.5.800
  • Yonelinas, A. P., Dobbins, I., Szymanski, M. D., Dhaliwal, H. S., & King, L. (1996). Signal-detection, threshold, and dual-process models of recognition memory: ROCs and conscious recollection. Consciousness and Cognition, 5(4), 418–441. doi: 10.1006/ccog.1996.0026
  • Yonelinas, A. P., Zhang, W., & Shapiro, K. (2012). Enhanced familiarity with sequential presentations in visual working memory. Journal of Vision, 12(9), 359–359. doi: 10.1167/12.9.359
  • Zhang, W. (In preparation). Configural encoding in visual short-term memory.
  • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. doi: 10.1038/nature06860

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.