673
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Cortical evidence for negative search templates

, & ORCID Icon
Pages 278-290 | Received 19 Dec 2016, Accepted 28 May 2017, Published online: 23 Jun 2017

References

  • Agter, F., & Donk, M. (2005). Prioritized selection in visual search through onset capture and color inhibition: Evidence from a probe-dot detection task. Journal of Experimental Psychology: Human Perception and Performance, 31(4), 722–730.
  • Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange, F. P. (2013). Shared representations for working memory and mental imagery in early visual cortex. Current Biology, 23(15), 1427–1431. doi: 10.1016/j.cub.2013.05.065
  • Allen, H. A., Humphreys, G. W., & Matthews, P. M. (2008). A neural marker of content-specific active ignoring. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 286–297.
  • Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 580–584.
  • Beck, V. M., & Hollingworth, A. (2015). Evidence for negative feature guidance in visual search is explained by spatial recoding.
  • Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the’spotlight'of visual attention. Nature Neuroscience, 2(4), 370–374. doi: 10.1038/7280
  • Brouwer, G. J., & Heeger, D. J. (2009). Decoding and reconstructing color from responses in human visual cortex. Journal of Neuroscience, 29(44), 13992–14003. doi: 10.1523/JNEUROSCI.3577-09.2009
  • Brouwer, G. J., & Heeger, D. J. (2013). Categorical clustering of the neural representation of color. Journal of Neuroscience, 33(39), 15454–15465. doi: 10.1523/JNEUROSCI.2472-13.2013
  • Chawla, D., Rees, G., & Friston, K. J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nature Neuroscience, 2(7), 671–676. doi: 10.1038/10230
  • Dent, K., Allen, H., Braithwaite, J., & Humphreys, G. (2012). Parallel distractor rejection as a binding mechanism in search. Frontiers in Psychology, 3, 278. doi: 10.3389/fpsyg.2012.00278
  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D.,  …  Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. doi: 10.1146/annurev.ne.18.030195.001205
  • Donk, M. (2017). Subset selective search on the basis of color and preview. Attention, Perception, & Psychophysics, 79(1), 85–99. doi: 10.3758/s13414-016-1211-7
  • Donk, M., & Theeuwes, J. (2001). Visual marking beside the mark: Prioritizing selection by abrupt onsets. Perception & Psychophysics, 63(5), 891–900. doi: 10.3758/BF03194445
  • Dougherty, R. F., Koch, V. M., Brewer, A. A., Fischer, B., Modersitzki, J., & Wandell, B. A. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision, 3(10), 1–1. doi: 10.1167/3.10.1
  • Duncan, J., & Humphreys, G. (1992). Beyond the search surface: visual search and attentional engagement.
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. doi: 10.1037/0033-295X.96.3.433
  • Engel, S¹., Zhang, X., & Wandell, B. (1997). Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature, 388(6637), 68–71.
  • Gegenfurtner, K. R. (2003). Sensory systems: Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4(7), 563–572. doi: 10.1038/nrn1138
  • Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632–635. doi: 10.1038/nature07832
  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760–775. doi: 10.1162/jocn.2009.21039
  • Humphreys, G. W., Freeman, T. A., & Muller, H. J. (1992). Lesioning a connectionist model of visual search: Selective effects on distractor grouping. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 46(3), 417–460. doi: 10.1037/h0084326
  • Humphreys, G. W., Kyllingsbaek, S., Watson, D. G., Olivers, C. N., Law, I., & Paulson, O. (2004). Parieto-occipital areas involved in efficient filtering in search: A time course analysis of visual marking using behavioural and functional imaging procedures. The Quarterly Journal of Experimental Psychology Section A, 57(4), 610–635. doi: 10.1080/02724980343000620
  • Humphreys, G. W., & Müller, H. J. (1993). SEarch via recursive rejection (SERR): A connectionist model of visual search. Cognitive Psychology, 25(1), 43–110. doi: 10.1006/cogp.1993.1002
  • Humphreys, G. W., Quinlan, P. T., & Riddoch, M. J. (1989). Grouping processes in visual search: Effects with single- and combined-feature targets. Journal of Experimental Psychology: General, 118(3), 258–279. doi: 10.1037/0096-3445.118.3.258
  • Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1985). Interactive processes in perceptual organization: Evidence from visual agnosia. In M.I. Posner, & O.S.M. Marin (Eds.), Attention and performance XI (pp. 301–318). Hillsdale, NJ: Erlbaum.
  • Humphreys, G. W., Stalmann, B. J., & Olivers, C. (2004). An analysis of the time course of attention in preview search. Perception & Psychophysics, 66(5), 713–730. doi: 10.3758/BF03194967
  • Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5, 143–156. doi: 10.1016/S1361-8415(01)00036-6
  • Jiang, Y., Chun, M. M., & Marks, L. E. (2002). Visual marking: Selective attention to asynchronous temporal groups. Journal of Experimental Psychology: Human Perception and Performance, 28(3), 717–730.
  • Jiang, Y., & Wang, S. W. (2004). What kind of memory supports visual marking? Journal of Experimental Psychology: Human Perception and Performance, 30(1), 79–91.
  • Kiyonaga, A., Korb, F., Lucas, J., Soto, D., & Egner, T. (2014). Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory. NeuroImage, 100, 200–205. doi: 10.1016/j.neuroimage.2014.06.019
  • Klein, R. M., & MacInnes, W. J. (1999). Inhibition of return is a foraging facilitator in visual search. Psychological Science, 10(4), 346–352. doi: 10.1111/1467-9280.00166
  • Kleinschmidt, A., Lee, B. B., Requardt, M., & Frahm, J. (1996). Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation. Experimental Brain Research, 110(2), 279–288. doi: 10.1007/BF00228558
  • Kok, P., Failing, M. F., & de Lange, F. P. (2014). Prior expectations evoke stimulus templates in the primary visual cortex. Journal of Cognitive Neuroscience, 26(7), 1546–1554. doi: 10.1162/jocn_a_00562
  • Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4. doi: 10.3389/neuro.01.016.2008
  • Mavritsaki, E., Allen, H. A., & Humphreys, G. W. (2010). Decomposing the neural mechanisms of visual search through model-based analysis of fMRI: Top-down excitation, active ignoring and the use of saliency by the right TPJ. Neuroimage, 52(3), 934–946. doi: 10.1016/j.neuroimage.2010.03.044
  • Müller, H. J., Humphreys, G. W., & Donnelly, N. (1994). SEarch via recursive rejection (SERR): Visual search for single and dual form-conjunction targets. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 235–258.
  • Olivers, C. N., & Humphreys, G. W. (2002). When visual marking meets the attentional blink: More evidence for top-down, limited-capacity inhibition. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 22–42.
  • Olivers, C. N., & Humphreys, G. W. (2003). Visual marking inhibits singleton capture. Cognitive Psychology, 47(1), 1–42. doi: 10.1016/S0010-0285(03)00003-3
  • Olivers, C. N., & Humphreys, G. W. (2004). Spatiotemporal segregation in visual search: Evidence from parietal lesions. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 667–688.
  • Olivers, C. N., Humphreys, G. W., & Braithwaite, J. J. (2006). The preview search task: Evidence for visual marking. Visual Cognition, 14(4–8), 716–735. doi: 10.1080/13506280500194188
  • Olivers, C. N., Humphreys, G. W., Heinke, D., & Cooper, A. C. (2002). Prioritization in visual search: Visual marking is not dependent on a mnemonic search. Perception & Psychophysics, 64(4), 540–560. doi: 10.3758/BF03194725
  • Olivers, C. N., Smith, S., Matthews, P., & Humphreys, G. W. (2005). Prioritizing new over old: An fMRI study of the preview search task. Human Brain Mapping, 24(1), 69–78. doi: 10.1002/hbm.20071
  • Olivers, C. N., Watson, D. G., & Humphreys, G. W. (1999). Visual marking of locations and feature maps: Evidence from within-dimension defined conjunctions. The Quarterly Journal of Experimental Psychology Section A, 52(3), 679–715. doi: 10.1080/713755836
  • Payne, H. E., & Allen, H. A. (2011). Active ignoring in early visual cortex. Journal of Cognitive Neuroscience, 23(8), 2046–2058. doi: 10.1162/jocn.2010.21562
  • Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences, 108(29), 12125–12130. doi: 10.1073/pnas.1101042108
  • Peirce, J. W. (2007). PsychoPy – Psychophysics software in python. Journal of Neuroscience Methods, 162(1–2), 8–13. doi: 10.1016/j.jneumeth.2006.11.017
  • Pollmann, S., Weidner, R., Humphreys, G. W., Olivers, C. N., Müller, K., Lohmann, G., …  Watson D. G. (2003). Separating distractor rejection and target detection in posterior parietal cortex—an event-related fMRI study of visual marking. Neuroimage, 18(2), 310–323. doi: 10.1016/S1053-8119(02)00036-8
  • Reeder, R. R., Hanke, M., & Pollmann, S. (2017). Task relevance modulates the cortical representation of feature conjunctions in the target template. Scientific Reports. doi:10.7490/f1000research.1112201.1
  • Reeder, R. R., & Peelen, M. V. (2013). The contents of the search template for category-level search in natural scenes. Journal of Vision, 13(3), 13–13. doi: 10.1167/13.3.13
  • Reeder, R. R., Perini, F., & Peelen, M. V. (2015). Preparatory activity in posterior temporal cortex causally contributes to object detection in scenes. Journal of Cognitive Neuroscience, 27(11), 2117–2125. doi: 10.1162/jocn_a_00845
  • Reeder, R. R., van Zoest, W., & Peelen, M. V. (2015). Involuntary attentional capture by task-irrelevant objects that match the search template for category detection in natural scenes. Attention, Perception, & Psychophysics, 77(4), 1070–1080. doi: 10.3758/s13414-015-0867-8
  • Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470. doi: 10.3758/APP.72.6.1455
  • Serences, J. T., Yantis, S., Culberson, A., & Awh, E. (2004). Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. Journal of Neurophysiology, 92(6), 3538–3545. doi: 10.1152/jn.00435.2004
  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155. doi: 10.1002/hbm.10062
  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., …  Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208–S219. doi: 10.1016/j.neuroimage.2004.07.051
  • Soto, D., Greene, C., Kiyonaga, A., Rosenthal, C., & Egner, T. (2012). A parieto-medial temporal pathway for the strategic control over working memory biases in human visual attention. Journal of Neuroscience, 32(49), 17563–17571. doi: 10.1523/JNEUROSCI.2647-12.2012
  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261.
  • Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342–348. doi: 10.1016/j.tics.2008.05.007
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi: 10.1016/0010-0285(80)90005-5
  • Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459–478.
  • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90–122. doi: 10.1037/0033-295X.104.1.90
  • Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Attention, Perception & Psychophysics, 62, 471–481. doi: 10.3758/BF03212099
  • Watson, D. G., Humphreys, G. W., & Olivers, C. N. (2003). Visual marking: Using time in visual selection. Trends in Cognitive Sciences, 7(4), 180–186. doi: 10.1016/S1364-6613(03)00033-0
  • Wolfe, J. M. (2007). Guided Search 4.0: Current progress with a model of visual search. In W. D. Gray (Ed.), Integrative models of cognitive systems (pp. 99–119). New York: Oxford University Press.
  • Zeki, S. (1983). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience, 9, 741–765. doi: 10.1016/0306-4522(83)90265-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.