168
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Spatial constraints on probability learning in visual working memory

&
Pages 34-50 | Received 02 Jan 2017, Accepted 14 Jun 2017, Published online: 02 Aug 2017

References

  • Abed, F. (1991). The influence of dimensionality on eye fixations. Perception, 20(4), 449–454. doi: 10.1068/p200449
  • Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16(8), 637–643. doi: 10.1111/j.1467-9280.2005.01587.x
  • Alvarez, G. A., Gill, J., & Cavanagh, P. (2012). Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection. Journal of Vision, 12(5), 9, 1–20. doi: 10.1167/12.5.9
  • Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 780–790. doi: 10.1037/0096-1523.24.3.780
  • Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89. doi: 10.1016/S0079-7421(08)60452-1
  • Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854. doi: 10.1126/science.1158023
  • Ben-Shahar, O., Scholl, B. J., & Zucker, S. W. (2007). Attention, segregation, and textons: Bridging the gap between object-based attention and texton-based segregation. Vision Research, 47(6), 845–860. doi: 10.1016/j.visres.2006.10.019
  • Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487–502. doi: 10.1037/a0016797
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. doi: 10.1017/S0140525X01003922
  • Delvenne, J.-F. (2005). The capacity of visual short-term memory within and between hemifields. Cognition, 96(3), B79–B88. doi: 10.1016/j.cognition.2004.12.007
  • Delvenne, J.-F. (2012). Visual short-term memory and the bilateral field advantage. In G. Kalivas, & S. F. Petralia (Eds.), Short-term memory: New research (pp. 129–154). New York, NY: Nova Science Publishers.
  • Delvenne, J.-F., Braithwaite, J. J., Riddoch, M. J., & Humphreys, G. W. (2002). Capacity limits in visual short-term memory for local orientations. Cahiers de Psychologie Cognitive/Current Psychology of Cognition, 21(6), 681–690.
  • Delvenne, J.-F., Castronovo, J., Demeyere, N., & Humphreys, G. W. (2009). Enumerating visual items within and across hemifields. Journal of Vision, 9, 205. doi: 10.1167/9.8.205
  • Delvenne, J.-F., Castronovo, J., Demeyere, N., & Humphreys, G. W. (2011). Bilateral field advantage in visual enumeration. PLoS One, 6(3), e17743. doi: 10.1371/journal.pone.0017743
  • Delvenne, J.-F., & Holt, J. L. (2012). Splitting attention across the two visual fields in visual short-term memory. Cognition, 122(2), 258–263. doi: 10.1016/j.cognition.2011.10.015
  • Delvenne, J.-F., Kaddour, L. A., & Castronovo, J. (2011). An electrophysiological measure of visual short-term memory capacity within and across hemifields. Psychophysiology, 48(3), 333–336. doi: 10.1111/j.1469-8986.2010.01079.x
  • Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Ward, R., Kyllingsbæk, S., … Chavda, S. (2003). Attentional functions in dorsal and ventral simultanagnosia. Cognitive Neuropsychology, 20(8), 675–701. doi: 10.1080/02643290342000041
  • Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134–141. doi: 10.1016/j.tics.2013.01.010
  • Gilchrist, A. L., & Cowan, N. (2014). A two-stage search of visual working memory: Investigating speed in the change-detection paradigm. Attention, Perception, & Psychophysics, 76(7), 2031–2050. doi: 10.3758/s13414-014-0704-5
  • Goldring, J., & Fischer, B. (1997). Reaction times of vertical prosaccades and antisaccades in gap and overlap tasks. Experimental Brain Research, 113(1), 88–103. doi: 10.1007/BF02454145
  • Golomb, J. D., & Kanwisher, N. (2012). Retinotopic memory is more precise than spatiotopic memory. Proceedings of the National Academy of Sciences, 109(5), 1796–1801. doi: 10.1073/pnas.1113168109
  • Greenberg, A. S., Hayes, D., Roggeveen, A., Creighton, S., Bennett, P., Sekuler, A., & Pilz, K. (2014). Object-based attention is modulated by shifts across the meridians. Journal of Vision, 14(10), 1062. doi: 10.1167/14.10.1062
  • Heinke, D., & Humphreys, G. W. (2003). Attention, spatial representation, and visual neglect: Simulating emergent attention and spatial memory in the selective attention for identification model (SAIM). Psychological Review, 110(1), 29–87. doi: 10.1037/0033-295X.110.1.29
  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.
  • Holt, J. L., & Delvenne, J.-F. (2014). A bilateral advantage in controlling access to visual short-term memory. Experimental Psychology, 61(2), 127–133. doi: 10.1027/1618-3169/a000232
  • Holt, J. L., & Delvenne, J.-F. (2015). A bilateral advantage for maintaining objects in visual short term memory. Acta Psychologica, 154, 54–61. doi: 10.1016/j.actpsy.2014.11.007
  • Humphreys, G. W. (1998). Neural representation of objects in space: A dual coding account. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 1341–1351. doi: 10.1098/rstb.1998.0288
  • Hyun, J. S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140–1160. doi: 10.1037/a0015019
  • Jensen, A. (2006). Clocking the mind: Mental chronometry and individual differences. Amsterdam: Elsevier.
  • Kosslyn, S. M. (1973). Scanning visual images: Some structural implications. Perception & Psychophysics, 14(1), 90–94. doi: 10.3758/BF03198621
  • Lawrence, B. M., Myerson, J., Oonk, H. M., & Abrams, R. A. (2001). The effects of eye and limb movements on working memory. Memory, 9(4), 433–444. doi: 10.1080/09658210143000047
  • Luce, R. D. (1986). Response times. New York: Oxford University Press.
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. doi: 10.1038/36846
  • Ludwig, T. E., Jeeves, M. A., Norman, W. D., & DeWitt, R. (1993). The bilateral field advantage on a letter-matching task. Cortex, 29, 691–713. doi: 10.1016/S0010-9452(13)80291-2
  • Mackeben, M. (1999). Sustained focal attention and peripheral letter recognition. Spatial Vision, 12(1), 51–72. doi: 10.1163/156856899X00030
  • Marino, A. C., & Scholl, B. J. (2005). The role of closure in defining the “objects” of object-based attention. Perception & Psychophysics, 67(7), 1140–1149. doi: 10.3758/BF03193547
  • Nicoletti, R., & Umiltà, C. (1984). Right-left prevalence in spatial compatibility. Perception & Psychophysics, 35(4), 333–343. doi: 10.3758/BF03206337
  • Olivers, C. N., Humphreys, G. W., Heinke, D., & Cooper, A. C. (2002). Prioritization in visual search: Visual marking is not dependent on a mnemonic search. Perception & Psychophysics, 64(4), 540–560. doi: 10.3758/BF03194725
  • Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working memory performance. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 889–900. doi: 10.1037/0096-1523.31.5.889
  • Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophyisics, 44(4), 369–378. doi: 10.3758/BF03210419
  • Pearson, B., Raskevicius, J., Bays, P. M., Pertzov, Y., & Husain, M. (2014). Working memory retrieval as a decision process. Journal of Vision, 14(2), 2. doi: 10.1167/14.2.2
  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366
  • Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Riddoch, M. J., & Humphreys, G. W. (1983). The effect of cueing on unilateral neglect. Neuropsychologia, 21(6), 589–599. doi: 10.1016/0028-3932(83)90056-8
  • Riddoch, M. J., Humphreys, G. W., Blott, W., Hardy, E., Smith, A. D., & Smith, A. D. (2003). Visual and spatial short-term memory in integrative agnosia. Cognitive Neuropsychology, 20(7), 641–671. doi: 10.1080/02643290342000078
  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261. doi: 10.1037/0096-1523.31.2.248
  • Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342–348. doi: 10.1016/j.tics.2008.05.007
  • Soto, D., Wriglesworth, A., Bahrami-Balani, A., & Humphreys, G. W. (2010). Working memory enhances visual perception: Evidence from signal detection analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(2), 441–456. doi: 10.1037/a0018686
  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11, Whole No. 498), 1–29. doi: 10.1037/h0093759
  • Stadler, M. A., & Frensch, P. A. (Eds.). (1998). Handbook of implicit learning. Thousand Oaks, CA: Sage Publications
  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654. doi: 10.1126/science.153.3736.652
  • Störmer, V. S., Alvarez, G. A., & Cavanagh, P. (2014). Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention. Journal of Neuroscience, 34(35), 11526–11533. doi: 10.1523/JNEUROSCI.0980-14.2014
  • Umemoto, A., Drew, T., Ester, E. F., & Awh, E. (2010). A bilateral advantage for storage in visual working memory. Cognition, 117(1), 69–79. doi: 10.1016/j.cognition.2010.07.001
  • Umemoto, A., Scolari, M., Vogel, E. K., & Awh, E. (2010). Statistical learning induces discrete shifts in the allocation of working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1419–1429. doi: 10.1037/a0019324
  • Watson, D. G., Humphreys, G. W., & Olivers, C. N. (2003). Visual marking: Using time in visual selection. Trends in Cognitive Sciences, 7(4), 180–186. doi: 10.1016/S1364-6613(03)00033-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.